Featured Research

from universities, journals, and other organizations

Computer scientists develop 'mathematical jigsaw puzzles' to encrypt software

Date:
July 29, 2013
Source:
University of California - Los Angeles
Summary:
Computer science experts have designed a system to encrypt software so that it only allows someone to use a program as intended while preventing any deciphering of the code behind it. This is known in computer science as "software obfuscation," and it is the first time it has been accomplished.

Concept illustration of mathematical jigsaw puzzle.
Credit: Courtesy of UCLA Engineering

UCLA computer science professor Amit Sahai and a team of researchers have designed a system to encrypt software so that it only allows someone to use a program as intended while preventing any deciphering of the code behind it. This is known in computer science as "software obfuscation," and it is the first time it has been accomplished.

Sahai, who specializes in cryptography at UCLA's Henry Samueli School of Engineering and Applied Science, collaborated with Sanjam Garg, who recently earned his doctorate at UCLA and is now at IBM Research; Craig Gentry, Shai Halevi and Mariana Raykova of IBM Research; and Brent Waters, an assistant professor of computer science at the University of Texas at Austin. Garg worked with Sahai as a student when the research was done.

Their peer-reviewed paper will be formally presented in October at the 54th annual IEEE Symposium on Foundations of Computer Science, one of the two most prominent conferences in the field of theoretical computer science. Sahai has also presented this research in recent invited talks at Stanford University and the Massachusetts Institute of Technology.

"The real challenge and the great mystery in the field was: Can you actually take a piece of software and encrypt it but still have it be runnable, executable and fully functional," Sahai said. "It's a question that a lot of companies have been interested in for a long time."

According to Sahai, previously developed techniques for obfuscation presented only a "speed bump," forcing an attacker to spend some effort, perhaps a few days, trying to reverse-engineer the software. The new system, he said, puts up an "iron wall," making it impossible for an adversary to reverse-engineer the software without solving mathematical problems that take hundreds of years to work out on today's computers -- a game-change in the field of cryptography.

The researchers said their mathematical obfuscation mechanism can be used to protect intellectual property by preventing the theft of new algorithms and by hiding the vulnerability a software patch is designed to repair when the patch is distributed.

"You write your software in a nice, reasonable, human-understandable way and then feed that software to our system," Sahai said. "It will output this mathematically transformed piece of software that would be equivalent in functionality, but when you look at it, you would have no idea what it's doing."

The key to this successful obfuscation mechanism is a new type of "multilinear jigsaw puzzle." Through this mechanism, attempts to find out why and how the software works will be thwarted with only a nonsensical jumble of numbers.

"The real innovation that we have here is a way of transforming software into a kind of mathematical jigsaw puzzle," Sahai said. "What we're giving you is just math, just numbers, or a sequence of numbers. But it lives in this mathematical structure so that these individual pieces, these sequences of numbers, can only be combined with other numbers in very specified ways.

"You can inspect everything, you can turn it upside-down, you can look at it from different angles and you still won't have any idea what it's doing," he added. "The only thing you can do with it is put it together the way that it was meant to interlock. If you tried to do anything else -- like if you tried to bash this piece and put it in some other way -- you'd just end up with garbage."

Functional encryption

The new technique for software obfuscation paved the way for another breakthrough called functional encryption. With functional encryption, instead of sending an encrypted message, an encrypted function is sent in its place. This offers a much more secure way to protect information, Sahai said. Previous work on functional encryption was limited to supporting very few functions; the new work can handle any computable function.

For example, a single message could be sent to a group of people in such a way that each receiver would obtain different information, depending on characteristics of that particular receiver. In another example, a hospital could share the outcomes of treatment with researchers without revealing details such as identifying patient information.

"Through functional encryption, you only get the specific answer, you don't learn anything else," Sahai said.

The UCLA-based researchers were funded in part by the National Science Foundation, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel and an Okawa Foundation Research Grant.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Computer scientists develop 'mathematical jigsaw puzzles' to encrypt software." ScienceDaily. ScienceDaily, 29 July 2013. <www.sciencedaily.com/releases/2013/07/130729161946.htm>.
University of California - Los Angeles. (2013, July 29). Computer scientists develop 'mathematical jigsaw puzzles' to encrypt software. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/07/130729161946.htm
University of California - Los Angeles. "Computer scientists develop 'mathematical jigsaw puzzles' to encrypt software." ScienceDaily. www.sciencedaily.com/releases/2013/07/130729161946.htm (accessed August 23, 2014).

Share This




More Computers & Math News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Apple iPhone 6 Screen Hits Snag Ahead of Launch

Apple iPhone 6 Screen Hits Snag Ahead of Launch

Reuters - Business Video Online (Aug. 22, 2014) Reuters has learned Apple is scrambling to get enough screens ready for the iPhone 6. Sources say it's unclear whether this could delay the launch. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is Apple's iMessage Really Being Overrun By Spammers?

Is Apple's iMessage Really Being Overrun By Spammers?

Newsy (Aug. 21, 2014) A report says more than one third of all SMS spam over the past year came from a "single campaign" using iMessage and targeting iPhone users. Video provided by Newsy
Powered by NewsLook.com
Families Can Now Ask Twitter To Remove Photos Of Deceased

Families Can Now Ask Twitter To Remove Photos Of Deceased

Newsy (Aug. 20, 2014) In the wake of a high-profile harassment case, Twitter says family members can ask for photos of dying or dead relatives to be taken down. Video provided by Newsy
Powered by NewsLook.com
Ballmer Leaves Microsoft's Board, Has Advice For Nadella

Ballmer Leaves Microsoft's Board, Has Advice For Nadella

Newsy (Aug. 19, 2014) In a letter to Microsoft CEO Satya Nadella, Ballmer said he's leaving the board of directors and offered tips on how the company can be successful. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins