Featured Research

from universities, journals, and other organizations

Scientists 'spike' stem cells to generate myelin

Date:
August 28, 2013
Source:
University of California - Davis Health System
Summary:
Stem cell technology has long offered the hope of regenerating tissue to repair broken or damaged neural tissue.

Myelination of spiking and non-spiking mESC-OPCs.
Credit: UC Regents

Stem cell technology has long offered the hope of regenerating tissue to repair broken or damaged neural tissue. Findings from a team of UC Davis investigators have brought this dream a step closer by developing a method to generate functioning brain cells that produce myelin -- a fatty, insulating sheath essential to normal neural conduction.

"Our findings represent an important conceptual advance in stem cell research," said Wenbin Deng, principal investigator of the study and associate professor at the UC Davis Department of Biochemistry and Molecular Medicine. "We have bioengineered the first generation of myelin-producing cells with superior regenerative capacity."

The brain is made up predominantly of two cell types: neurons and glial cells. Neurons are regarded as responsible for thought and sensation. Glial cells surround, support and communicate with neurons, helping neurons process and transmit information using electrical and chemical signals. One type of glial cell -- the oligodendrocyte -- produces a sheath called myelin that provides support and insulation to neurons. Myelin, which has been compared to insulation around electrical wires that helps to prevent short circuits, is essential for normal neural conduction and brain function; well-recognized conditions involving defective myelin development or myelin loss include multiple sclerosis and leukodystrophies.

In this study, the UC Davis team first developed a novel protocol to efficiently induce embryonic stem cells (ESCs) to differentiate into oligodendroglial progenitor cells (OPCs), early cells that normally develop into oligodendrocytes. Although this has been successfully done by other researchers, the UC Davis method results in a purer population of OPCs, according to Deng, with fewer other cell types arising from their technique.

They next compared electrophysiological properties of the derived OPCs to naturally occurring OPCs. They found that unlike natural OPCs, the ESC-derived OPCs lacked sodium ion channels in their cell membranes, making them unable to generate spikes when electrically stimulated. Using a technique called viral transduction, they then introduced DNA that codes for sodium channels into the ESC-derived OPCs. These OPCs then expressed ion channels in their cells and developed the ability to generate spikes.

According to Deng, this is the first time that scientists have successfully generated OPCs with so-called spiking properties. This achievement allowed them to compare the capabilities of spiking cells to non-spiking cells.

In cell culture, they found that only spiking OPCs received electrical input from neurons, and they showed superior capability to mature into oligodendrocytes.

They also transplanted spiking and non-spiking OPCs into the spinal cord and brains of mice that are genetically unable to produce myelin. Both types of OPCs had the capability to mature into oligo-dendrocytes and produce myelin, but those from spiking OPCs produced longer and thicker myelin sheaths around axons.

"We actually developed 'super cells' with an even greater capacity to spike than natural cells," Deng said. "This appears to give them an edge for maturing into oligodendrocytes and producing better myelin."

It is well known that adult human neural tissue has a poor capacity to regenerate naturally. Although early cells such as OPCs are present, they do not regenerate tissue very effectively when disease or injury strikes.

Deng believes that replacing glial cells with the enhanced spiking OPCs to treat neural injuries and diseases has the potential to be a better strategy than replacing neurons, which tend to be more problematic to work with. Providing the proper structure and environment for neurons to live may be the best approach to regenerate healthy neural tissue. He also notes that many diverse conditions that have not traditionally been considered to be myelin-related diseases -- including schizophrenia, epilepsy and amyotrophic lateral sclerosis (ALS) -- actually are now recognized to involve defective myelin.

Other study authors affiliated with the UC Davis Department of Biochemistry and Molecular Medicine and/or the Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children are Peng Jiang, Chen Chen, Vimal Selvaraj, Wei Lu, Daniel Feldman and David Pleasure. The team also included Xiao-Bo Liu of the UC Davis Center for Neuroscience, and Ronald Li, who was at UC Davis at the time of the research, and now at the University of Hong Kong, China, and Ying Liu, now with the University of Texas Health Science Center at Houston.

This research was supported by grants from the National Institutes of Health (R01NS061983 and R01ES015988, the National Multiple Sclerosis Society, Shriners Hospitals for Children and the California Institute for Regenerative Medicine.


Story Source:

The above story is based on materials provided by University of California - Davis Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peng Jiang, Chen Chen, Xiao-Bo Liu, Vimal Selvaraj, Wei Liu, Daniel H. Feldman, Ying Liu, David E. Pleasure, Ronald A. Li, Wenbin Deng. Generation and characterization of spiking and non-spiking oligodendroglial progenitor cells from embryonic stem cells. STEM CELLS, 2013; DOI: 10.1002/stem.1515

Cite This Page:

University of California - Davis Health System. "Scientists 'spike' stem cells to generate myelin." ScienceDaily. ScienceDaily, 28 August 2013. <www.sciencedaily.com/releases/2013/08/130828144840.htm>.
University of California - Davis Health System. (2013, August 28). Scientists 'spike' stem cells to generate myelin. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/08/130828144840.htm
University of California - Davis Health System. "Scientists 'spike' stem cells to generate myelin." ScienceDaily. www.sciencedaily.com/releases/2013/08/130828144840.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins