Featured Research

from universities, journals, and other organizations

Neuroscientists find a key to reducing forgetting: It's about the network

Date:
August 29, 2013
Source:
New York University
Summary:
A team of neuroscientists has found a key to the reduction of forgetting. Their findings show that the better the coordination between two regions of the brain, the less likely we are to forget newly obtained information.

A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are to forget newly obtained information.

Related Articles


The study was conducted at New York University by Lila Davachi, an associate professor in NYU's Department of Psychology and Center for Neural Science, and Kaia Vilberg, now a postdoctoral researcher at the University of Texas' Center for Vital Longevity and School of Behavioral and Brain Sciences in Dallas.

"When memories are supported by greater coordination between different parts of the brain, it's a sign that they are going to last longer," explained Davachi.

It is commonly understood that the key to memory consolidation -- the cementing of an experience or information in our brain -- is signaling from the brain's hippocampus across different cortical areas. Moreover, it has been hypothesized, but never proven, that the greater the distribution of signaling, the stronger the memory takes hold in our brain.

In the Neuron study, Davachi and Vilberg sought to determine if there was scientific support for this theory.

To do so, they examined how memories are formed at their earliest stages through a series of experiments over a three-day period.

On day one of the study, the researchers aimed to encode, or create, new memories among the study's subjects. Here, they showed participants a series of images -- objects and outdoor scenes, both of which were paired with words. Here, subjects were asked to form an association between the word and image presented on the screen.

On day two, the subjects returned to the lab and completed another round of encoding tasks using new sets of visuals and words. This allowed to the researchers to compare two types of memory: the more consolidated, long duration (LD) memories encoded on day one with the less consolidated, short duration (SD) memories encoded on day two.

After a short break, participants were placed in an MRI machine -- in order to monitor neural activity -- and viewed the same visual-word pairings they saw on days one and two as well as a new round of visuals paired with words. They then completed a memory test of approximately half of the visual-word pairings they'd seen thus far. On day three, they returned to the lab for a memory test on the remaining visuals.

By testing over multiple days, the researchers were able to isolate memories that declined or were preserved over time and, with it, better understand the neurological factors that contribute to memory preservation.

Their results showed that memories (i.e., the visual-word associations) that were not forgotten were associated with greater coordination between the hippocampus and left perirhinal cortex (LPRC) -- two parts of the brain previously linked with memory formation. By contrast, there was notably less connectivity between these regions for visual-word associations that the study's subjects tended to forget.

Moreover, the researchers found that the coordinated brain activity between the hippocampus and the LPRC -- but not overall activity in these regions -- was related to memory strengthening, arguing for the network's contribution to memory longevity.

"These findings show the brain strengthens memories by distributing them across networks," explained Davachi. "However, this process takes time. Day-old memories show greater coordinated brain activity compared to recent ones. This suggests that coordinated brain activity increases with time after a memory is initially formed."

The research was supported by a grant from the National Institute of Mental Health (RO1-MH074692) and Dart Neuroscience.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. KaiaL. Vilberg, Lila Davachi. Perirhinal-Hippocampal Connectivity during Reactivation Is a Marker for Object-Based Memory Consolidation. Neuron, 2013; DOI: 10.1016/j.neuron.2013.07.013

Cite This Page:

New York University. "Neuroscientists find a key to reducing forgetting: It's about the network." ScienceDaily. ScienceDaily, 29 August 2013. <www.sciencedaily.com/releases/2013/08/130829123444.htm>.
New York University. (2013, August 29). Neuroscientists find a key to reducing forgetting: It's about the network. ScienceDaily. Retrieved November 20, 2014 from www.sciencedaily.com/releases/2013/08/130829123444.htm
New York University. "Neuroscientists find a key to reducing forgetting: It's about the network." ScienceDaily. www.sciencedaily.com/releases/2013/08/130829123444.htm (accessed November 20, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, November 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids React to Lammily, The Realistic Barbie Alternative

Kids React to Lammily, The Realistic Barbie Alternative

Buzz60 (Nov. 19, 2014) Artist Nickolay Lamm's Kickstarter-funded Lammily doll, based on his 'What Would Barbie Look Like as a Real Woman' project, is finally available to buy. Jen Markham explains how the doll's realistic proportions are going over with a test group of second-graders who are used to the impossible measurements of Barbie dolls. Video provided by Buzz60
Powered by NewsLook.com
Trans-Fat Foods Now Linked To Poor Memory

Trans-Fat Foods Now Linked To Poor Memory

Newsy (Nov. 19, 2014) A study presented at the American Heart Association Scientific Sessions shows a link between diets high in trans fats and decreased memory recall. Video provided by Newsy
Powered by NewsLook.com
Creating Lifelong Love of Science and Math

Creating Lifelong Love of Science and Math

AP (Nov. 18, 2014) Kelly Mathews is a new mom on a mission to get girls interested in science, technology, engineering and math, and it starts with her own daughter. The Girl Scouts are doing their part, too, by promoting S.T.E.M. through badges and activities. (Nov. 18) Video provided by AP
Powered by NewsLook.com
3D Fun Improves Child Therapy in Poland

3D Fun Improves Child Therapy in Poland

Reuters - Innovations Video Online (Nov. 17, 2014) Scientists in Poland are helping children with autism and Down's Syndrome better focus on therapeutic exercises by taking them out of their real world environment and into a specially-designed 3D cave in which their imagination can flourish. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins