Featured Research

from universities, journals, and other organizations

Magnetic materials: Forging ahead with a back-to-basics approach

Date:
August 31, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Atomic-level simulations hint at how to control the magnetic properties of layered materials for data storage applications.

Scientists have recently started to explore the possibility of using an intrinsic property of the electron known as spin for processing and storing information. Magnetic fields can influence the dynamics of electron spin, so harnessing this potential relies on precision engineering of crystalline storage materials. Chee Kwan Gan and co‐workers at the A*STAR Institute of High Performance Computing and the A*STAR Data Storage Institute in Singapore have used theoretical calculations to show how the magnetic characteristics of specific materials can be controlled at the atomic level.

Their results could lead to novel magnetic recording devices.

One promising route to such spintronic devices is to design structures consisting of alternating layers of different magnetic atoms. The strength of the magnetic influence is stronger in the direction of the multilayer stack than it is parallel to the planes of the atoms. This so-called perpendicular magnetic anisotropy is useful for spintronic memory devices because it allows a greater storage density than a conventional electronic device.

The properties of these structures, however, are highly sensitive to the precise arrangement of the crystal. Just one misplaced layer of atoms -- a stacking fault -- can noticeably alter device performance (see image). Previous studies usually ignored these special defects, "but nature sometimes makes 'mistakes'," explains Gan. "It is important to understand these defects and subsequently use them to control the material's physical properties."

Gan and his team went back to basics to better understand how atom-level imperfections affect the properties of these multilayers. They used a powerful mathematical approach known as density functional theory. This approach uses only fundamental equations from quantum mechanics to model the behavior of electrons in these structures, without requiring any prior assumptions.

The researchers modeled a material consisting of alternating layers of cobalt and palladium atoms. Multilayers of these atoms have previously exhibited a large perpendicular magnetic anisotropy when the cobalt layers are less than 0.8 nanometers thick. Gan and co-workers then assessed how stacking faults and the ratio of cobalt to palladium atoms affected this anisotropy. Their results showed that a stacking fault could enhance the magnetic anisotropy in structures with a relatively thick cobalt layer. They also found that the anisotropy increased almost linearly with increasing cobalt content.

High magnetic anisotropy materials have potential for use in the next generation of ultrafast and high-capacity magnetic random-access memory, Gan explains. The improved understanding of these materials from this research will guide the way to realizing such devices.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Wu, K. H. Khoo, M. H. Jhon, H. Meng, S. Y. H. Lua, R. Sbiaa, C. K. Gan. First-principles calculations of the magnetic anisotropic constants of Co–Pd multilayers: Effect of stacking faults. EPL (Europhysics Letters), 2012; 99 (1): 17001 DOI: 10.1209/0295-5075/99/17001

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Magnetic materials: Forging ahead with a back-to-basics approach." ScienceDaily. ScienceDaily, 31 August 2013. <www.sciencedaily.com/releases/2013/08/130831110641.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, August 31). Magnetic materials: Forging ahead with a back-to-basics approach. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/08/130831110641.htm
The Agency for Science, Technology and Research (A*STAR). "Magnetic materials: Forging ahead with a back-to-basics approach." ScienceDaily. www.sciencedaily.com/releases/2013/08/130831110641.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins