Featured Research

from universities, journals, and other organizations

Magnetic materials: Forging ahead with a back-to-basics approach

Date:
August 31, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Atomic-level simulations hint at how to control the magnetic properties of layered materials for data storage applications.

Scientists have recently started to explore the possibility of using an intrinsic property of the electron known as spin for processing and storing information. Magnetic fields can influence the dynamics of electron spin, so harnessing this potential relies on precision engineering of crystalline storage materials. Chee Kwan Gan and co‐workers at the A*STAR Institute of High Performance Computing and the A*STAR Data Storage Institute in Singapore have used theoretical calculations to show how the magnetic characteristics of specific materials can be controlled at the atomic level.

Their results could lead to novel magnetic recording devices.

One promising route to such spintronic devices is to design structures consisting of alternating layers of different magnetic atoms. The strength of the magnetic influence is stronger in the direction of the multilayer stack than it is parallel to the planes of the atoms. This so-called perpendicular magnetic anisotropy is useful for spintronic memory devices because it allows a greater storage density than a conventional electronic device.

The properties of these structures, however, are highly sensitive to the precise arrangement of the crystal. Just one misplaced layer of atoms -- a stacking fault -- can noticeably alter device performance (see image). Previous studies usually ignored these special defects, "but nature sometimes makes 'mistakes'," explains Gan. "It is important to understand these defects and subsequently use them to control the material's physical properties."

Gan and his team went back to basics to better understand how atom-level imperfections affect the properties of these multilayers. They used a powerful mathematical approach known as density functional theory. This approach uses only fundamental equations from quantum mechanics to model the behavior of electrons in these structures, without requiring any prior assumptions.

The researchers modeled a material consisting of alternating layers of cobalt and palladium atoms. Multilayers of these atoms have previously exhibited a large perpendicular magnetic anisotropy when the cobalt layers are less than 0.8 nanometers thick. Gan and co-workers then assessed how stacking faults and the ratio of cobalt to palladium atoms affected this anisotropy. Their results showed that a stacking fault could enhance the magnetic anisotropy in structures with a relatively thick cobalt layer. They also found that the anisotropy increased almost linearly with increasing cobalt content.

High magnetic anisotropy materials have potential for use in the next generation of ultrafast and high-capacity magnetic random-access memory, Gan explains. The improved understanding of these materials from this research will guide the way to realizing such devices.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Wu, K. H. Khoo, M. H. Jhon, H. Meng, S. Y. H. Lua, R. Sbiaa, C. K. Gan. First-principles calculations of the magnetic anisotropic constants of Co–Pd multilayers: Effect of stacking faults. EPL (Europhysics Letters), 2012; 99 (1): 17001 DOI: 10.1209/0295-5075/99/17001

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Magnetic materials: Forging ahead with a back-to-basics approach." ScienceDaily. ScienceDaily, 31 August 2013. <www.sciencedaily.com/releases/2013/08/130831110641.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, August 31). Magnetic materials: Forging ahead with a back-to-basics approach. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/08/130831110641.htm
The Agency for Science, Technology and Research (A*STAR). "Magnetic materials: Forging ahead with a back-to-basics approach." ScienceDaily. www.sciencedaily.com/releases/2013/08/130831110641.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins