Featured Research

from universities, journals, and other organizations

Advancing graphene for post-silicon computer logic

Date:
September 3, 2013
Source:
University of California - Riverside
Summary:
Scientists have solved a problem that previously presented a serious hurdle for the use of graphene in electronic devices.

Scanning electron microscopy image of graphene device used in the study. The scale bar is one micrometer. The UCR logo next to it is implemented with etched graphene.
Credit: Image courtesy of University of California - Riverside

A team of researchers from the University of California, Riverside's Bourns College of Engineering have solved a problem that previously presented a serious hurdle for the use of graphene in electronic devices.

Graphene is a single-atom thick carbon crystal with unique properties beneficial for electronics including extremely high electron mobility and phonon thermal conductivity. However, graphene does not have an energy band gap, which is a specific property of semiconductor materials that separate electrons from holes and allows a transistor implemented with a given material to be completely switched off.

A transistor implemented with graphene will be very fast but will suffer from leakage currents and power dissipation while in the off state because of the absence of the energy band gap. Efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. That left scientists wondering whether graphene applications in electronic circuits for information processing were feasible.

The UC Riverside team -- Alexander Balandin and Roger Lake, both electrical engineering professors, Alexander Khitun, an adjunct professor of electrical engineering, and Guanxiong Liu and Sonia Ahsan, both of whom earned their Ph.Ds from UC Riverside while working on this research -- has eliminated that doubt.

"Most researchers have tried to change graphene to make it more like conventional semiconductors for applications in logic circuits," Balandin said. "This usually results in degradation of graphene properties. For example, attempts to induce an energy band gap commonly result in decreasing electron mobility while still not leading to sufficiently large band gap."

"We decided to take alternative approach," Balandin said. "Instead of trying to change graphene, we changed the way the information is processed in the circuits."

The UCR team demonstrated that the negative differential resistance experimentally observed in graphene field-effect transistors allows for construction of viable non-Boolean computational architectures with the gap-less graphene. The negative differential resistance -- observed under certain biasing schemes -- is an intrinsic property of graphene resulting from its symmetric band structure.

Modern digital logic, which is used in computers and cell phones, is based on Boolean algebra implemented in semiconductor switch-based circuits. It uses zeroes and ones for encoding and processing the information. However, the Boolean logic is not the only way to process information. The UC Riverside team proposed to use specific current-voltage characteristics of graphene for constructing the non-Boolean logic architecture, which utilizes the principles of the non-linear networks.

The graphene transistors for this study were built and tested by Liu at Balandin's Nano-Device Laboratory at UC Riverside. The physical processes leading to unusual electrical characteristics were simulated using atomistic models by Ahsan, who was working under Lake. Khitun provided expertise on non-Boolean logic architectures.

The atomistic modeling conducted in Lake's group shows that the negative differential resistance appears not only in microscopic-size graphene devices but also at the nanometer-scale, which would allow for fabrication of extremely small and low power circuits.

The proposed approach for graphene circuits presents a conceptual change in graphene research and indicates an alternative route for graphene's applications in information processing according to the UC Riverside team.


Story Source:

The above story is based on materials provided by University of California - Riverside. The original article was written by Sean Nealon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guanxiong Liu, Sonia Ahsan, Alexander G. Khitun, Roger K. Lake, Alexander A. Balandin. Graphene-Based Non-Boolean Logic Circuits. Submitted to arXiv, 2013 [link]

Cite This Page:

University of California - Riverside. "Advancing graphene for post-silicon computer logic." ScienceDaily. ScienceDaily, 3 September 2013. <www.sciencedaily.com/releases/2013/09/130903091438.htm>.
University of California - Riverside. (2013, September 3). Advancing graphene for post-silicon computer logic. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/09/130903091438.htm
University of California - Riverside. "Advancing graphene for post-silicon computer logic." ScienceDaily. www.sciencedaily.com/releases/2013/09/130903091438.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins