Featured Research

from universities, journals, and other organizations

Alzheimer's: Newly identified protein pathology impairs RNA splicing

Date:
September 10, 2013
Source:
Emory Health Sciences
Summary:
Researchers have identified a previously unrecognized type of pathology in the brains of patients with Alzheimer's disease. These tangle-like structures appear at early stages of Alzheimer's and are not found in other neurodegenerative diseases such as Parkinson's disease. The appearance of these tangles, which sequester proteins involved in RNA splicing, is linked to widespread changes in Alzheimer's brains compared to healthy brains.

In Alzheimer's disease, all that tangles is not tau. A protein pathology identified by Emory investigators could have major implications for understanding the disease mechanism. Tangled string-like structures involving aggregated U1 snRNP splicing proteins can be seen on the right side of this photo. The darker round structures are cell nuclei.
Credit: Woodruff Health Sciences Center

Move over, plaques and tangles.

Researchers at Emory University School of Medicine's Alzheimer's Disease Research Center have identified a previously unrecognized type of pathology in the brains of patients with Alzheimer's disease.

These tangle-like structures appear at early stages of Alzheimer's and are not found in other neurodegenerative diseases such as Parkinson's disease.

What makes these tangles distinct is that they sequester proteins involved in RNA splicing, the process by which instructional messages from genes are cut and pasted together. The researchers show that the appearance of these tangles is linked to widespread changes in RNA splicing in Alzheimer's brains compared to healthy brains.

The finding could change scientists' understanding of how the disease develops and progresses, by explaining how genes that have been linked to Alzheimer's contribute their effects, and could lead to new biomarkers, diagnostic approaches, and therapies.

The results are published in the Proceedings of the National Academy of Sciences, Early Edition.

"We were very surprised to find alterations in proteins that are responsible for RNA splicing in Alzheimer's, which could have major implications for the disease mechanism," says Allan Levey, MD, PhD, chair of neurology at Emory University School of Medicine and director of the Emory ADRC.

"This is a brand new arena," says James Lah, MD, PhD, associate professor of neurology at Emory University School of Medicine and director of the Cognitive Neurology program. "Many Alzheimer's investigators have looked at how the disease affects alternative splicing of individual genes. Our results suggest a global distortion of RNA processing is taking place."

This research was led by Drs. Levey, Lah, and Junmin Peng, PhD, who was previously associate professor of genetics at Emory and is now a faculty member at St Jude Children's Research Hospital. They were aided by collaborators at University of Kentucky, Rush University, and University of Washington as well as colleagues at Emory.

Accumulations of plaques and tangles in the brains of patients with Alzheimer's disease were first observed more than a century ago. Investigating the proteins in these pathological structures has been central to the study of the disease.

Most experimental treatments for Alzheimer's have aimed at curbing beta-amyloid, an apparently toxic protein fragment that is the dominant component of amyloid plaques. Other approaches target the abnormal accumulation of the protein tau in neurofibrillary tangles. Yet the development of Alzheimer's is not solely explained by amyloid and tau pathologies, Lah says.

"Two individuals may harbor similar amounts of amyloid plaques and tau tangles in their brains, but one may be completely healthy while the other may have severe memory loss and dementia," he says.

These discrepancies led Emory investigators to take a "back to basics" proteomics approach, cataloguing the proteins that make up insoluble deposits in the brains of Alzheimer's patients.

"The Alzheimer's field has been very focused on amyloid and tau, and we wanted to use today's proteomics technologies to take a comprehensive, unbiased approach," Levey says.

The team identified 36 proteins that were much more abundant in the detergent-resistant deposits in brain tissue from Alzheimer's patients. This list included the usual suspects: tau and beta-amyloid. Also on the list were several "U1 snRNP" proteins, which are involved in RNA splicing.

These U1 proteins are normally seen in the nucleus of normal cells, but in Alzheimer's brains they accumulated in tangle-like structures. Accumulation of insoluble U1 protein was seen in samples from patients with mild cognitive impairment (MCI), a precursor stage to Alzheimer's, but the U1 pathology was not seen in any other brain diseases that were examined.

According to Chad Hales, MD, PhD, one of the study's lead authors, "U1 aggregation is occurring early in the disease, and U1 tangles can be seen independently of tau pathology. In some cases, we see accumulation of insoluble U1 proteins before the appearance of insoluble tau, suggesting that it is a very early event."

For most genes, after RNA is read out from the DNA (transcription), some of the RNA must be spliced out. When brain cells accumulate clumps of U1 proteins, that could mean the process of splicing is impaired. To test this, the Emory team examined RNA from the brains of Alzheimer's patients. In comparison to RNA from healthy brains, more of the RNA from Alzheimer's brain samples was unspliced.

The finding could explain how many genes that have been linked to Alzheimer's are having their effects. In cells, U1 snRNP plays multiple roles in processing RNA including the process of alternative splicing, by which one gene can make instructions for two or more proteins.

"U1 dysfunction might produce changes in RNA processing affecting many genes or specific changes affecting a few key genes that are important in Alzheimer's," Lah says. "Understanding the disruption of such a fundamental process will almost certainly identify new ways to understand Alzheimer's and new approaches to treating patients."


Story Source:

The above story is based on materials provided by Emory Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Bai, C. M. Hales, P.-C. Chen, Y. Gozal, E. B. Dammer, J. J. Fritz, X. Wang, Q. Xia, D. M. Duong, C. Street, G. Cantero, D. Cheng, D. R. Jones, Z. Wu, Y. Li, I. Diner, C. J. Heilman, H. D. Rees, H. Wu, L. Lin, K. E. Szulwach, M. Gearing, E. J. Mufson, D. A. Bennett, T. J. Montine, N. T. Seyfried, T. S. Wingo, Y. E. Sun, P. Jin, J. Hanfelt, D. M. Willcock, A. Levey, J. J. Lah, J. Peng. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1310249110

Cite This Page:

Emory Health Sciences. "Alzheimer's: Newly identified protein pathology impairs RNA splicing." ScienceDaily. ScienceDaily, 10 September 2013. <www.sciencedaily.com/releases/2013/09/130910171452.htm>.
Emory Health Sciences. (2013, September 10). Alzheimer's: Newly identified protein pathology impairs RNA splicing. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/09/130910171452.htm
Emory Health Sciences. "Alzheimer's: Newly identified protein pathology impairs RNA splicing." ScienceDaily. www.sciencedaily.com/releases/2013/09/130910171452.htm (accessed July 30, 2014).

Share This




More Mind & Brain News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins