Featured Research

from universities, journals, and other organizations

Extremely potent, improved derivatives of successful anticancer drug created

Date:
September 16, 2013
Source:
Scripps Research Institute
Summary:
Scientists have found a way to make dramatic improvements to the cancer cell-killing power of vinblastine, one of the most successful chemotherapy drugs of the past few decades. The team's modified versions of vinblastine showed 10 to 200 times greater potency than the clinical drug.

The TSRI researchers expect that similar modifications will boost the effectiveness of vincristine, a closely related drug that is commonly used against childhood leukemias and Hodgkin's disease.
Credit: iStockphoto

Scientists at The Scripps Research Institute (TSRI) have found a way to make dramatic improvements to the cancer cell-killing power of vinblastine, one of the most successful chemotherapy drugs of the past few decades. The team's modified versions of vinblastine showed 10 to 200 times greater potency than the clinical drug. Even more significantly, these new compounds overcome the drug resistance that emerges upon treatment relapse, which renders continued or subsequent vinblastine treatment ineffective in some patients.

The TSRI researchers expect that similar modifications will boost the effectiveness of vincristine, a closely related drug that is commonly used against childhood leukemias and Hodgkin's disease.

"These new compounds should improve on what are already superb anticancer drugs," said Dale L. Boger, who is the Richard and Alice Cramer Professor and Chair of the Department of Chemistry at TSRI. Boger and members of his laboratory reported the discovery in a paper recently published online ahead of print by the journal ACS Medicinal Chemistry Letters.

Anticancer Agents

Vinblastine and vincristine are natural products of a pink-flowered herb known as the Madagascar periwinkle. Although the leaves of the plant had been used in traditional medicines for a range of other conditions, from diabetes to hemorrhoids, drug researchers at Eli Lilly found in the 1960s that the two compounds showed excellent potential as anticancer agents.

Both were found to selectively kill cancer cells by a mechanism that many other cancer drugs, including taxol, epothilones, and colchicine, have followed since -- they bind a cellular protein called tubulin in a way that interferes with the buildup and breakdown of tubulin-containing chains called microtubules -- structural elements of cells that play a key role in cell division. When the normal dynamics of their microtubules are disrupted, fast-dividing cancer cells stop dividing and die.

Since the 1960s, vinblastine has been used successfully in combination with other chemotherapy drugs against lymphomas as well as testicular, ovarian, breast, bladder and lung cancers. Vincristine is routinely used in combination regimens against childhood acute lymphoblastic leukemia and non-Hodgkin lymphomas. Both compounds are presently isolated from cultivated fields of the plants that make them naturally, but in trace amounts (0.0001% of the dry leaf weight). Since they are plant-derived natural products, they cannot be accessed using existing biotechnology or genetic engineering methods and, prior to the TSRI efforts, they were viewed as far too complex to be prepare by laboratory organic chemistry techniques. The authors developed a remarkable three-step preparation from commercially available chemicals using chemistry that they invented specifically for this purpose.

A significant limitation of vinblastine and vincristine is that, with extended treatment, they may evoke a powerful form of drug resistance. This resistance comes from a doorkeeper-type molecule called P-glycoprotein (Pgp), which transports infiltrating drug molecules out of the cancer cells. As cancer cells evolve to produce more and more Pgp, drugs fail to reach effective concentrations in cells and cancerous growth resumes. For years, medicinal chemists have tried to find modified versions -- "analogues" -- of these drugs that would overcome Pgp-mediated resistance, but without success.

Developing Extraordinary Potency

Last year, however, in a landmark paper in Organic Letters, Boger and his colleagues described a broad new method for modifying organic compounds like vinblastine, and demonstrated the method by making previously inaccessible variants of the drug. "Although it is a versatile method, we developed it specifically so that we could start making these vinblastine analogues that couldn't be made before," Boger said.

As his team used the method to make more new vinblastine analogues, the scientists discovered a type of modification to the drug that limits its usual drop in potency against resistant, Pgp-overproducing cancer cells as compared to non-resistant cancer cells. For the new study, the team explored variations of that modification and eventually found several analogues that were as good at killing resistant cells as ordinary vinblastine is at killing non-resistant cancer cells.

These new analogues were also many times more potent than vinblastine against non-resistant cells -- which are the kinds of cancer cells almost all patients have at diagnosis. The laboratory of a major drug company, Bristol-Myers Squibb, was able to repeat these results in a larger set of clinically important human tumor cell lines, and Boger's team confirmed that the new analogues' greater potency corresponds to their greater ability to bind to tubulin.

"The potency of these analogues is extraordinary -- they show activity down at the 100 picomolar level [100 trillionths of a mole] against some cell lines," said Boger. "So we have something here that's really unique, and we discovered it only because of the novel chemistry we developed."


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Timothy J. Barker, Katharine K. Duncan, Katerina Otrubova, Dale L. Boger. Potent Vinblastine C20′ Ureas Displaying Additionally Improved Activity Against a Vinblastine-Resistant Cancer Cell Line. ACS Medicinal Chemistry Letters, 2013; 130909155105008 DOI: 10.1021/ml400281w

Cite This Page:

Scripps Research Institute. "Extremely potent, improved derivatives of successful anticancer drug created." ScienceDaily. ScienceDaily, 16 September 2013. <www.sciencedaily.com/releases/2013/09/130916140500.htm>.
Scripps Research Institute. (2013, September 16). Extremely potent, improved derivatives of successful anticancer drug created. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/09/130916140500.htm
Scripps Research Institute. "Extremely potent, improved derivatives of successful anticancer drug created." ScienceDaily. www.sciencedaily.com/releases/2013/09/130916140500.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins