Featured Research

from universities, journals, and other organizations

Scientists develop a more effective molecular modeling process

Date:
September 26, 2013
Source:
Scripps Research Institute
Summary:
A new method to produce accurate computer models of molecules combines existing formulas in a kind of algorithmic stew to gain a better picture of molecular structural diversity that is then used to eliminate errors and improve the final model.

It's difficult and time-consuming to produce accurate computer models of molecules, primarily because traditional modeling methods are limited in their ability to handle alternative molecular shapes and, consequently, are subject to multiple errors.

Moreover, the traditional approach uses mathematical formulas or algorithms that are run sequentially, refining the structural details of the model with each separate algorithm -- a method that has been revolutionized by personal computing, but still requires labor-intensive human intervention for error correction.

A new method developed by scientists on the Florida campus of The Scripps Research Institute (TSRI) takes another tack entirely, combining existing formulas in a kind of algorithmic stew to gain a better picture of molecular structural diversity that is then used to eliminate errors and improve the final model.

The method was described in a paper published online ahead of print on September 26, 2013 by the journal Structure.

The new process, called Extensive Combinatorial Refinement (ExCoR), could help improve the development of drug candidates that depend to a great degree on detailed structural analysis to determine how they work against specific disease targets.

"Our combinatorial method creates computerized molecular models in a more automated way," said Kendall Nettles, a TSRI associate professor who led the study. "This is an important component of drug discovery -- to do them in a more automated fashion will significantly help the process."

Improvement and Some Surprises

In the study, the scientists subjected more than 50 molecular structures to 256 distinct combinations of algorithms and refinement factors that eventually totaled more than 12,000 independent refinement runs.

Nettles and his colleagues measured the improvement in the models by what is known as the R-factor, which measures the similarity between the actual structure of the molecule and the experimental model -- in other words, just how closely the refined structure model can predict the factual data.

"Lowering that R-factor is the goal -- that's the selection process for finding the best algorithms," Nettles said.

While the study found that no single algorithm consistently produced the best model, the scientists did find some surprises.

"Some algorithms, if you combine them, tend to work better at producing a refined model," said Research Associate Jerome C. Nwachukwu, the first author of the study. "What we didn't expect was two algorithms that worked separately but didn't work in combination."

It is this strange overlap makes it impossible to predict which combinations of algorithms will work best for an individual structure.

"The refinement effects of the various algorithms depend on the structure itself," Nwachukwu said.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. JeromeC. Nwachukwu, MarkR. Southern, JamesR. Kiefer, PavelV. Afonine, PaulD. Adams, ThomasC. Terwilliger, KendallW. Nettles. Improved Crystallographic Structures Using Extensive Combinatorial Refinement. Structure, 2013; DOI: 10.1016/j.str.2013.07.025

Cite This Page:

Scripps Research Institute. "Scientists develop a more effective molecular modeling process." ScienceDaily. ScienceDaily, 26 September 2013. <www.sciencedaily.com/releases/2013/09/130926142930.htm>.
Scripps Research Institute. (2013, September 26). Scientists develop a more effective molecular modeling process. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/09/130926142930.htm
Scripps Research Institute. "Scientists develop a more effective molecular modeling process." ScienceDaily. www.sciencedaily.com/releases/2013/09/130926142930.htm (accessed September 22, 2014).

Share This



More Computers & Math News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
Oculus Reveals New Virtual Reality Headset Prototype

Oculus Reveals New Virtual Reality Headset Prototype

Newsy (Sep. 20, 2014) Oculus announced a new virtual reality headset prototype Saturday, saying the product is close to being ready for consumers. Video provided by Newsy
Powered by NewsLook.com
How To Protect Your Data In The Still-Vulnerable iOS 8

How To Protect Your Data In The Still-Vulnerable iOS 8

Newsy (Sep. 20, 2014) One security researcher says despite Apple's efforts to increase security in iOS 8, it's still vulnerable to law enforcement data-transfer techniques. Video provided by Newsy
Powered by NewsLook.com
How Much Privacy Protection Will Google's Android L Provide?

How Much Privacy Protection Will Google's Android L Provide?

Newsy (Sep. 19, 2014) Google's local encryption will make it harder for law enforcement or malicious actors to access the contents of devices running Android L. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins