Featured Research

from universities, journals, and other organizations

Solar power's future brawl

Date:
October 1, 2013
Source:
American Institute of Physics (AIP)
Summary:
Scientists have turned to computer modeling to help decide which of two competing materials should get its day in the sun as the nanoscale energy-harvesting technology of future solar panels -- quantum dots or nanowires.

Amorphous Silicon nanowire (yellow network) facilitates harvesting of solar energy in the form of a photon (wavy line). In the process of light absorption a pair of mobile charge carriers is created (red clouds depict an electron smeared in space, while the blue clouds visualize the so-called hole which is a positively charged carrier). The energy of their directed motion is then transformed into electricity. Electron and hole charge distributions are often located in different regions of space due to multiple structural defects in amorphous silicon nanowires.
Credit: A.Kryjevski, S.Kilina and D.Kilin/JRSE

A trio of researchers at North Dakota State University and the University of South Dakota have turned to computer modeling to help decide which of two competing materials should get its day in the sun as the nanoscale energy-harvesting technology of future solar panels -- quantum dots or nanowires.

Andrei Kryjevski and his colleagues, Dimitri Kilin and Svetlana Kilina, report in AIP Publishing's Journal of Renewable and Sustainable Energy that they used computational chemistry models to predict the electronic and optical properties of three types of nanoscale (billionth of a meter) silicon structures with a potential application for solar energy collection: a quantum dot, one-dimensional chains of quantum dots and a nanowire. The ability to absorb light is substantially enhanced in nanomaterials compared to those used in conventional semiconductors. Determining which form -- quantum dots or nanowire -- maximizes this advantage was the goal of the numerical experiment conducted by the three researchers.

"We used Density Functional Theory, a computational approach that allows us to predict electronic and optical properties that reflect how well the nanoparticles can absorb light, and how that effectiveness is affected by the interaction between quantum dots and the disorder in their structures," Kryjevski said. "This way, we can predict how quantum dots, quantum dot chains and nanowires will behave in real life even before they are synthesized and their working properties experimentally checked."

The simulations made by Kryjevski, Kilin and Kilina indicated that light absorption by silicon quantum dot chains significantly increases with increased interactions between the individual nanospheres in the chain. They also found that light absorption by quantum dot chains and nanowires depends strongly on how the structure is aligned in relation to the direction of the photons striking it. Finally, the researchers learned that the atomic structure disorder in the amorphous nanoparticles results in better light absorption at lower energies compared to crystalline-based nanomaterials.

"Based on our findings, we believe that putting the amorphous quantum dots in an array or merging them into a nanowire are the best assemblies for maximizing the efficiency of silicon nanomaterials to absorb light and transport charge throughout a photovoltaic system," Kryjevski said. "However, our study is only a first step in a comprehensive computational investigation of the properties of semiconductor quantum dot assemblies.

"The next steps are to build more realistic models, such as larger quantum dots with their surfaces covered by organic ligands and simulate the processes that occur in actual solar cells," he added.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrei Kryjevski, Dmitri Kilin, Svetlana Kilina. Amorphous silicon nanomaterials: Quantum dots versus nanowires. Journal of Renewable and Sustainable Energy, 2013; 5 (4): 043120 DOI: 10.1063/1.4817728

Cite This Page:

American Institute of Physics (AIP). "Solar power's future brawl." ScienceDaily. ScienceDaily, 1 October 2013. <www.sciencedaily.com/releases/2013/10/131001141212.htm>.
American Institute of Physics (AIP). (2013, October 1). Solar power's future brawl. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2013/10/131001141212.htm
American Institute of Physics (AIP). "Solar power's future brawl." ScienceDaily. www.sciencedaily.com/releases/2013/10/131001141212.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins