Featured Research

from universities, journals, and other organizations

Great potential for faster diagnoses with new method

Date:
October 3, 2013
Source:
University of Copenhagen
Summary:
The more accurately we can diagnose a disease, the greater the chance that the patient will survive. That is why many researchers are working to improve the quality of the diagnostic process. Researchers have discovered a method that will make the process faster, cheaper and more accurate. This is possible, because they are combining advanced tools used in physics for research in biology at nanoscale, two scientific disciplines usually very distant from each other.

Left: Electron microscope image of nanowire forest. Middle: Diagram of a single nanowire with proteins (red molecules) which captures a different type proteins (green molecules) from a solution. Right: Typical fluorescence microscope image of proteins captures on nanowires (seen from above).
Credit: Image courtesy of University of Copenhagen

The more accurately we can diagnose a disease, the greater the chance that the patient will survive. That is why many researchers are working to improve the quality of the diagnostic process. Researchers at the Nano-Science Center, University of Copenhagen have discovered a method that will make the process faster, cheaper and more accurate. This is possible, because they are combining advanced tools used in physics for research in biology at nanoscale, two scientific disciplines usually very distant from each other.

Related Articles


Many diseases can be diagnosed using so-called biomarkers. There are substances, for example, that can be measured in a blood sample, which shows that the patient is suffering from the disease in question. These biomarkers are often proteins that are found in very small quantities in the blood, making it difficult to detect them. By measuring them, the diagnosing is more precise and many diseases can be detected very early, before the patient develops severe symptoms.

"We have developed a method in which we optimise the analysis of the proteins. A central point of this method is the use of nanowires to hold the proteins while we analyse them. It is unique," explains Katrine R. Rostgaard, a PhD student at the Nano-Science Center, Department of Chemistry, University of Copenhagen.

Researchers normally use small plates to hold the proteins when they need to be analysed, but by using nanowires, which are cylindrical structures having a diameter of about 1/1000th of a human hair, they add a third dimension to the sample. The nanowires stand up like a little forest, creating a much greater surface area to hold the proteins because they can sit on all sides of the nanowire.

"With greater area, we can hold more proteins at once. This makes it possible to measure for multiple biomarkers simultaneously and it increases the signal, thereby providing a better quality of diagnosis," says Katrine R. Rostgaard about the method, which has just been published in the journal Nanoscale.

Profitable method for diagnosing

The research is done at the nanoscale on small size samples. The forests of nanowires are used to capture the proteins they want to study directly. When examining the proteins, you can reuse the nanowires by performing a multiple tests on the same protein. This simplifies the workflow in the laboratory tremendously in comparison to the conventional method, where researchers have to start over with a new plate to hold the proteins every time they perform a new analysis. In this way, the method helps to make the diagnostic process more environmentally friendly and economically viable for use in, for example, industry.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Cite This Page:

University of Copenhagen. "Great potential for faster diagnoses with new method." ScienceDaily. ScienceDaily, 3 October 2013. <www.sciencedaily.com/releases/2013/10/131003110200.htm>.
University of Copenhagen. (2013, October 3). Great potential for faster diagnoses with new method. ScienceDaily. Retrieved March 26, 2015 from www.sciencedaily.com/releases/2013/10/131003110200.htm
University of Copenhagen. "Great potential for faster diagnoses with new method." ScienceDaily. www.sciencedaily.com/releases/2013/10/131003110200.htm (accessed March 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins