Featured Research

from universities, journals, and other organizations

'White graphene' halts rust in high temps: Nano-thin films of hexagonal boron nitride protect materials from oxidizing

Date:
October 7, 2013
Source:
Rice University
Summary:
Films of hexagonal boron nitride a few nanometers thick protect materials from oxidizing at high temperatures.

Rice University researchers have discovered that hexagonal boron nitride (h-BN) can keep metals from rusting in high temperatures. At top, electron microscope images show uncoated nickel foil oxidized after half an hour in oxygen-rich conditions in a furnace at 1,100 degrees Celsius. At bottom, a transparent 5-nanometer coat of h-BN protects nickel subjected to the same conditions.
Credit: Zheng Liu/Rice University

Atomically thin sheets of hexagonal boron nitride (h-BN) have the handy benefit of protecting what's underneath from oxidizing even at very high temperatures, Rice University researchers have discovered.

Related Articles


One or several layers of the material sometimes called "white graphene" keep materials from oxidizing -- or rusting -- up to 1,100 degrees Celsius (2,012 degrees Fahrenheit), and can be made large enough for industrial applications, they said.

The Rice study led by materials scientists Pulickel Ajayan and Jun Lou appears today in the online journal Nature Communications.

Oxidation prevention is already big business, but no products available now work on the scale of what the Rice lab is proposing. The researchers see potential for very large sheets of h-BN only a few atoms thick made by scalable vapor deposition methods.

"We think this opens up new opportunities for two-dimensional material," said Lou, an associate professor of mechanical engineering and materials science. "Everybody has been talking about these materials for electronic or photonic devices, but if this can be realized on a large scale, it's going to cover a broad spectrum of applications."

Lou said ultrathin h-BN protection might find a place in turbines, jet engines, oil exploration or underwater or other harsh environments where minimal size and weight would be an advantage, though wear and abrasion could become an issue and optimum thicknesses need to be worked out for specific applications.

It's effectively invisible as well, which may make it useful for protecting solar cells from the elements, he said. "Essentially, this can be a very useful structural material coating," Lou said.

The researchers made small sheets of h-BN via chemical vapor deposition (CVD), a process they said should be scalable for industrial production. They first grew the thin material on nickel foil and found it withstood high temperature in an oxygen-rich environment. They also grew h-BN on graphene and found they could transfer sheets of h-BN to copper and steel with similar results.

"What's amazing is that these layers are ultrathin and they stand up to such ultrahigh temperatures," Ajayan said. "At a few nanometers wide, they're a totally non-invasive coating. They take almost no space at all."

Lead authors are Rice postdoctoral researcher Zheng Liu and graduate student Yongji Gong. Co-authors are Rice graduate student Lulu Ma and Senior Faculty Fellow Robert Vajtai; Wu Zhou, a Wigner Fellow, and Juan Carlos Idrobo, a staff scientist at Oak Ridge National Laboratory; Jingjiang Yu of Agilent Technologies; Jeil Jung, a research fellow at the National University of Singapore and a postdoctoral researcher at the University of Texas at Austin; and Allan MacDonald, the Sid W. Richardson Foundation Regents Chair Professor at the University of Texas at Austin. Ajayan is the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry at Rice.

The Army Research Office, the Office of Naval Research, the Welch Foundation, the Korean Institute of Machinery and Materials, the National Science Foundation, Oak Ridge National Laboratory and the Department of Energy supported the research.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zheng Liu, Yongji Gong, Wu Zhou, Lulu Ma, Jingjiang Yu, Juan Carlos Idrobo, Jeil Jung, Allan H. MacDonald, Robert Vajtai, Jun Lou, Pulickel M. Ajayan. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3541

Cite This Page:

Rice University. "'White graphene' halts rust in high temps: Nano-thin films of hexagonal boron nitride protect materials from oxidizing." ScienceDaily. ScienceDaily, 7 October 2013. <www.sciencedaily.com/releases/2013/10/131007112120.htm>.
Rice University. (2013, October 7). 'White graphene' halts rust in high temps: Nano-thin films of hexagonal boron nitride protect materials from oxidizing. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/10/131007112120.htm
Rice University. "'White graphene' halts rust in high temps: Nano-thin films of hexagonal boron nitride protect materials from oxidizing." ScienceDaily. www.sciencedaily.com/releases/2013/10/131007112120.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins