Featured Research

from universities, journals, and other organizations

Observing the living in real time and in a new light

Date:
October 10, 2013
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Fluorescence imaging, an important technique in biology and medicine, makes it possible to observe the living while in movement. However, the labels used in this domain are often in competition with the natural fluorescence of the biological medium and can hinder observation. On the other hand, under near-infrared light it is virtually zero. The first stable, non-toxic labels that are sufficiently efficient under near-infrared light to be used in fluorescence imaging have now been developed.

Fluorescence imaging, a very important technique in biology and medicine, makes it possible to observe the living while in movement. However, the labels used in this domain are very often in competition with the natural fluorescence of the biological medium. In fact, this autofluorescence can seriously hinder observation under visible light. On the other hand, under near-infrared light it is virtually zero. The first stable, non-toxic labels that are sufficiently efficient under near-infrared light to be used in fluorescence imaging have been developed by a team led by Inserm researcher Stéphane Petoud at the Centre de Biophysique Moléculaire of CNRS in Orleans (CBM) and Nathaniel Rosi at the University of Pittsburgh (USA). A new tool for exploring the living world in real time is now available to biologists-and probably to clinicians in the future. This work is published online w/c October 7, 2013, in the journal PNAS.

Fluorescence imaging is an emerging technique in the field of biomedical applications, allowing a specific target (cell constituents, a pathogenic agent, an active ingredient, etc.) to be observed and monitored in real time and in a non-invasive manner, not only in a single cell but also in a whole body. This is done by using labels, i.e. fluorescent molecules that target the areas to be observed and highlight them during observation.

These observations are limited by the natural fluorescence of biological components, which interferes with the signal emitted by imaging agents. Using near-infrared light makes it possible to overcome this phenomenon. In fact, this type of light interacts less with tissue components, allowing image quality to be improved and detection sensitivity to be enhanced. At present, very few efficient fluorescent labels exist for biological imaging in the near-infrared. The few commercially available agents are often highly sensitive to light and degrade very quickly, leading to the disappearance of their fluorescence (photobleaching). They can also be relatively toxic.

Lanthanide based molecules emit a very weak fluorescence signal in the near-infrared, which prevents their use for imaging purposes. The challenge taken up here by the Orleans-based researchers was to develop a compound whose structure allows the number of lanthanides per unit of volume to be multiplied in order to significantly increase detection sensitivity. Using porous materials known as MOFs (metal-organic frameworks)[1], the CMB scientists have been able to obtain significant fluorescence of these compounds in the near-infrared. It has been demonstrated that these compounds, based on luminescent lanthanides, have low toxicity and good resistance in water, which is essential for biology applications. The strategy developed has made it possible to obtain the first microscopy images with compounds based on luminescent lanthanides emitting in the near-infrared in living cells.

This work stems from multidisciplinary research at the interface between chemistry, biology and physics. These initial results are very promising for the development of imaging agents in the near-infrared that can be used in biological research and, in the longer term, in medical establishments.

[1] MOFs are rigid, porous nanoparticles already used in applications such as gas storage, fuel cells, catalysis and, much more recently, the delivery of therapeutic molecules and imaging (mainly MRI).


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Foucault-Collet, K. A. Gogick, K. A. White, S. Villette, A. Pallier, G. Collet, C. Kieda, T. Li, S. J. Geib, N. L. Rosi, S. Petoud. Lanthanide near infrared imaging in living cells with Yb3 nano metal organic frameworks. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1305910110

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "Observing the living in real time and in a new light." ScienceDaily. ScienceDaily, 10 October 2013. <www.sciencedaily.com/releases/2013/10/131010104920.htm>.
CNRS (Délégation Paris Michel-Ange). (2013, October 10). Observing the living in real time and in a new light. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2013/10/131010104920.htm
CNRS (Délégation Paris Michel-Ange). "Observing the living in real time and in a new light." ScienceDaily. www.sciencedaily.com/releases/2013/10/131010104920.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins