Featured Research

from universities, journals, and other organizations

Simpler route to hollow carbon spheres

Date:
October 11, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Microporous walls and a huge surface area help nanoparticles to boost lithium-ion battery performance.

Microporous walls and a huge surface area help nanoparticles to boost lithium-ion battery performance.

Hollow carbon nanoparticles are strong, conduct electricity well and have a remarkably large surface area. They show promise in applications such as water filtration, hydrogen storage and battery electrodes -- but commercial use would demand reliable, low-cost ways for their production.

Xu Li of Singapore's A*STAR Institute of Materials Research and Engineering and co-workers have developed a simple manufacturing technique that offers precise control over the size and shape of hollow carbon nanospheres1.

A current method for preparing these particles involves coating a hard template, such as silica nanoparticles, with a carbon-based material that can be fused into a shell using extreme heat. This is a laborious process, and etching away the template requires harsh chemicals. Heating hollow polystyrene nanospheres achieves similar results but offers poor control over the size and shape of the resulting carbon nanoparticles.

Li and co-workers combined a block copolymer called F127, consisting of poly(ethylene oxide) and poly(propylene oxide), with donut-shaped α-cyclodextrin molecules in water. After heating the mixture to 200 C, the molecules self-assembled into hollow nanoparticles with a 97.5% yield.

The water-repelling poly(propylene oxide) parts of the polymer stuck together to form hollow spheres, leaving poly(ethylene oxide) molecules dangling from the outside. The α-cyclodextrin rings then threaded onto these strands, packing around the outside of the sphere to form a stable shell. Using a higher proportion of F127 in the mix produced larger nanospheres, ranging from 200 to 400 nanometers in diameter. Heating these particles to 900 C in inert gases burned off the polymer to make hollow carbon nanoparticles.

The smallest nanospheres were 122 nanometers across and had 14 nanometer-thick walls dotted with tiny pores roughly 1 nanometer wide. Each gram of this material had a surface area of 317.5 square meters, which is greater than a tennis court.

The researchers used a slurry of particles to coat a copper foil and tested it as the anode in a lithium-ion battery. They found that the particles had a reversible charging capacity of 462 milliampere hours per gram -- higher than graphite, a typical anode material -- and could be recharged at least 75 times without significant loss of performance. The pores apparently allow lithium ions to migrate to the inside surfaces of the spheres. "Changing the porosity could improve the transport process for higher performance," suggests Li. The team now plans to incorporate metal and metal oxide materials into the hollow carbon nanospheres to further enhance their properties.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Zheng-Chun Yang, Yu Zhang, Jun-Hua Kong, Siew Yee Wong, Xu Li, John Wang. Hollow Carbon Nanoparticles of Tunable Size and Wall Thickness by Hydrothermal Treatment of α-Cyclodextrin Templated by F127 Block Copolymers. Chemistry of Materials, 2013; 25 (5): 704 DOI: 10.1021/cm303513y

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Simpler route to hollow carbon spheres." ScienceDaily. ScienceDaily, 11 October 2013. <www.sciencedaily.com/releases/2013/10/131011092525.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, October 11). Simpler route to hollow carbon spheres. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2013/10/131011092525.htm
The Agency for Science, Technology and Research (A*STAR). "Simpler route to hollow carbon spheres." ScienceDaily. www.sciencedaily.com/releases/2013/10/131011092525.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins