Featured Research

from universities, journals, and other organizations

Uniformity: The secret of better fusion ignition

Date:
October 11, 2013
Source:
Springer Science+Business Media
Summary:
Theoretical physicists use simulations to investigate the uniformity of irradiation at the ignition stage of thermonuclear fusion reaction. One of the ways to achieve thermonuclear fusion is through a controlled reaction between two light variants of hydrogen, called deuterium and tritium. Scientists have now made theoretical calculations indicating how best to improve the ignition stage of fusion reaction. Their approach involves increasing the uniformity of irradiation using high-power laser beams on the external shell of a spherical capsule containing a mix of deuterium and tritium.

One of the ways to achieve thermonuclear fusion is through a controlled reaction between two light variants of hydrogen, called deuterium and tritium. Mauro Temporal, from the Ιcole Normale Supιrieure Cachan, in France, and colleagues have made theoretical calculations indicating how best to improve the ignition stage of fusion reaction. Their approach, described in a paper published in The European Physical Journal D, involves increasing the uniformity of irradiation using high-power laser beams on the external shell of a spherical capsule containing a mix of deuterium and tritium.

Reaching uniformity of irradiation matters. Indeed, if it can be achieved, it rapidly heats up the capsule and makes it implode, compressing the fuel inside to very high density. This, in turn, induces the compression and heating of a small amount of fuel in a hot spot, which is a sine qua non for reaching the ignition conditions of thermonuclear fusion to produce large energy quantities.

Temporal and colleagues analyse the possibility of using the UK-based Orion facility's high-power laser beams to study uniformity. Orion has a few nanosecond-long pulse -5 kiloJoules in energy -which cannot achieve ignition, but can help to test ways to produce uniform irradiation from non-uniformly distributed beams: a technique called Polar Direct Drive.

Specifically, the authors use numerical simulations to analyse the uniformity of the illumination of a spherical target both in the case of circular or elliptical laser intensity profiles. Their work also takes into account other potentially disruptive factors. These include beam-to-beam power imbalance, laser-beam pointing error and target positioning error.

They demonstrate that this approach reduces considerably the non-uniformity of the capsule irradiation-by 50 percent and 35 percent, for elliptical and circular intensity profiles respectively.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mauro Temporal, Benoit Canaud, Warren J. Garbett, Franck Philippe, Rafael Ramis. Polar direct drive illumination uniformity provided by the Orion facility. The European Physical Journal D, 2013; 67 (10) DOI: 10.1140/epjd/e2013-40362-4

Cite This Page:

Springer Science+Business Media. "Uniformity: The secret of better fusion ignition." ScienceDaily. ScienceDaily, 11 October 2013. <www.sciencedaily.com/releases/2013/10/131011093647.htm>.
Springer Science+Business Media. (2013, October 11). Uniformity: The secret of better fusion ignition. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2013/10/131011093647.htm
Springer Science+Business Media. "Uniformity: The secret of better fusion ignition." ScienceDaily. www.sciencedaily.com/releases/2013/10/131011093647.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) — Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins