Featured Research

from universities, journals, and other organizations

Glowing neurons reveal networked link between brain, whiskers

Date:
October 16, 2013
Source:
Duke University
Summary:
New research on mouse whiskers reveals a surprise -- at the fine scale, the sensory system's wiring diagram doesn't have a set pattern. And it's probably the case that no two people's touch sensory systems are wired exactly the same at the detailed level, according to this study.

New research on mouse whiskers from Duke University reveals a surprise -- at the fine scale, the sensory system's wiring diagram doesn't have a set pattern.
Credit: Emilia Stasiak / Fotolia

Human fingertips have several types of sensory neurons that are responsible for relaying touch signals to the central nervous system. Scientists have long believed these neurons followed a linear path to the brain with a "labeled-lines" structure.

But new research on mouse whiskers from Duke University reveals a surprise -- at the fine scale, the sensory system's wiring diagram doesn't have a set pattern. And it's probably the case that no two people's touch sensory systems are wired exactly the same at the detailed level, according to Fan Wang, Ph.D., an associate professor of neurobiology in the Duke Medical School.

The results, which appear online in Cell Reports, highlight a "one-to-many, many-to-one" nerve connectivity strategy. Single neurons send signals to multiple potential secondary neurons, just as signals from many neurons can converge onto a secondary neuron. Many such connections are likely formed by chance, Wang said. This connectivity scheme allows the touch system to have many possible combinations to encode a large repertoire of textures and forms.

"We take our sense of touch for granted," Wang said. "When you speak, you are not aware of the constant tactile feedback from your tongue and teeth. Without such feedback, you won't be able to say the words correctly. When you write with a pen, you're mostly unaware of the sensors telling you how to move it."

It's not feasible to visualize the touch pathways in the human brain at high resolutions. So, Wang and her collaborators from the University of Tsukuba in Japan and the Friedrich Miescher Institute for Biomedical Research in Switzerland used the whiskers of laboratory mice to map how distinct sensor neurons, presumably detecting different mechanical stimuli, are connected to signal the brain. When the sensory neurons are activated, they send the signal along an axon -- a long, slender nerve fiber than conducts electric impulses to the brain. The researchers traced signals running the long path from the mouse's whiskers to the brain.

Wang's group used a combination of genetic engineering and fluorescent tags delivered by viruses to color-code four different kinds of neurons and map their connections.

Earlier work by Wang and others had found that all of the 100 to 200 sensors associated with a single whisker project their axons to a large structure representing that whisker in the brain. Each whisker has its own neural representation structure.

"People have thought that within the large whisker-representing structure, there will be finer-scale, labeled lines," Wang said. "In other words, different touch sensors would send information through separate parallel pathways, into that large structure. But surprisingly, we did not find such organized pathways. Instead, we found a completely unorganized mosaic pattern of connections within the large structure. Information from different sensors is intermixed already at the first relay station inside the brain."

Wang said the next step will be to stimulate the labeled circuits in different ways to see how impulses travel the network.

"We want to figure out the exact functions and signals transmitted by different sensors during natural tactile behaviors and determine their exact roles on the perception of textures," she said.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katsuyasu Sakurai, Masahiro Akiyama, Bin Cai, Alexandra Scott, Bao-Xia Han, Jun Takatoh, Markus Sigrist, Silvia Arber, Fan Wang. The Organization of Submodality-Specific Touch Afferent Inputs in the Vibrissa Column. Cell Reports, 2013; DOI: 10.1016/j.celrep.2013.08.051

Cite This Page:

Duke University. "Glowing neurons reveal networked link between brain, whiskers." ScienceDaily. ScienceDaily, 16 October 2013. <www.sciencedaily.com/releases/2013/10/131016112714.htm>.
Duke University. (2013, October 16). Glowing neurons reveal networked link between brain, whiskers. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2013/10/131016112714.htm
Duke University. "Glowing neurons reveal networked link between brain, whiskers." ScienceDaily. www.sciencedaily.com/releases/2013/10/131016112714.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins