Featured Research

from universities, journals, and other organizations

Glowing neurons reveal networked link between brain, whiskers

Date:
October 16, 2013
Source:
Duke University
Summary:
New research on mouse whiskers reveals a surprise -- at the fine scale, the sensory system's wiring diagram doesn't have a set pattern. And it's probably the case that no two people's touch sensory systems are wired exactly the same at the detailed level, according to this study.

New research on mouse whiskers from Duke University reveals a surprise -- at the fine scale, the sensory system's wiring diagram doesn't have a set pattern.
Credit: Emilia Stasiak / Fotolia

Human fingertips have several types of sensory neurons that are responsible for relaying touch signals to the central nervous system. Scientists have long believed these neurons followed a linear path to the brain with a "labeled-lines" structure.

But new research on mouse whiskers from Duke University reveals a surprise -- at the fine scale, the sensory system's wiring diagram doesn't have a set pattern. And it's probably the case that no two people's touch sensory systems are wired exactly the same at the detailed level, according to Fan Wang, Ph.D., an associate professor of neurobiology in the Duke Medical School.

The results, which appear online in Cell Reports, highlight a "one-to-many, many-to-one" nerve connectivity strategy. Single neurons send signals to multiple potential secondary neurons, just as signals from many neurons can converge onto a secondary neuron. Many such connections are likely formed by chance, Wang said. This connectivity scheme allows the touch system to have many possible combinations to encode a large repertoire of textures and forms.

"We take our sense of touch for granted," Wang said. "When you speak, you are not aware of the constant tactile feedback from your tongue and teeth. Without such feedback, you won't be able to say the words correctly. When you write with a pen, you're mostly unaware of the sensors telling you how to move it."

It's not feasible to visualize the touch pathways in the human brain at high resolutions. So, Wang and her collaborators from the University of Tsukuba in Japan and the Friedrich Miescher Institute for Biomedical Research in Switzerland used the whiskers of laboratory mice to map how distinct sensor neurons, presumably detecting different mechanical stimuli, are connected to signal the brain. When the sensory neurons are activated, they send the signal along an axon -- a long, slender nerve fiber than conducts electric impulses to the brain. The researchers traced signals running the long path from the mouse's whiskers to the brain.

Wang's group used a combination of genetic engineering and fluorescent tags delivered by viruses to color-code four different kinds of neurons and map their connections.

Earlier work by Wang and others had found that all of the 100 to 200 sensors associated with a single whisker project their axons to a large structure representing that whisker in the brain. Each whisker has its own neural representation structure.

"People have thought that within the large whisker-representing structure, there will be finer-scale, labeled lines," Wang said. "In other words, different touch sensors would send information through separate parallel pathways, into that large structure. But surprisingly, we did not find such organized pathways. Instead, we found a completely unorganized mosaic pattern of connections within the large structure. Information from different sensors is intermixed already at the first relay station inside the brain."

Wang said the next step will be to stimulate the labeled circuits in different ways to see how impulses travel the network.

"We want to figure out the exact functions and signals transmitted by different sensors during natural tactile behaviors and determine their exact roles on the perception of textures," she said.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katsuyasu Sakurai, Masahiro Akiyama, Bin Cai, Alexandra Scott, Bao-Xia Han, Jun Takatoh, Markus Sigrist, Silvia Arber, Fan Wang. The Organization of Submodality-Specific Touch Afferent Inputs in the Vibrissa Column. Cell Reports, 2013; DOI: 10.1016/j.celrep.2013.08.051

Cite This Page:

Duke University. "Glowing neurons reveal networked link between brain, whiskers." ScienceDaily. ScienceDaily, 16 October 2013. <www.sciencedaily.com/releases/2013/10/131016112714.htm>.
Duke University. (2013, October 16). Glowing neurons reveal networked link between brain, whiskers. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/10/131016112714.htm
Duke University. "Glowing neurons reveal networked link between brain, whiskers." ScienceDaily. www.sciencedaily.com/releases/2013/10/131016112714.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins