Featured Research

from universities, journals, and other organizations

Uncovering liquid foam's bubbly acoustics

Date:
October 17, 2013
Source:
Springer Science+Business Media
Summary:
Liquid foams fascinate toddlers singing in a bubble bath. Physicists, too, have an interest in their acoustical properties. Borrowing from both porous material and foam science, scientists studied liquid foams. They used an impedance tube to measure the velocity and attenuation of acoustic waves in liquid foams in a broad frequency range.

Liquid foams fascinate toddlers singing in a bubble bath. Physicists, too, have an interest in their acoustical properties.
Credit: Vera Kuttelvaserova / Fotolia

Liquid foams fascinate toddlers singing in a bubble bath. Physicists, too, have an interest in their acoustical properties. Borrowing from both porous material and foam science, Juliette Pierre from the Paris Diderot University, Paris, France and her colleagues studied liquid foams. They used an impedance tube to measure the velocity and attenuation of acoustic waves in liquid foams in a broad frequency range. The study published in EPJ E is a first in the literature. It could help in assessing any liquid foam's bubble size or in designing the optimal foam structure for sound proofing.

The authors used well-characterised liquid foam samples. Thus, they knew all the parameters needed for computing predictions on the acoustics characteristics of existing foam models.

The authors found that the effective velocity of sound in liquid foams is low, ranging from 20 to 60 meters per second. It is lower than the speed of sound in each of its constituents, namely 1,500 and 340 meters per second in water and air, respectively. They also confirmed previous findings: sound velocity only depends on the liquid volume fraction and not on the bubble size over the investigated range of frequencies.

In addition, by looking into several types of liquid foams with the same structure but different composition, they found shaving foam to have a higher effective sound velocity than any other foam. This means that the type of foaming solution influences acoustic properties.

Finally, they showed that the existing models do not give a good prediction of the high sound attenuation observed. The next step would be to understand the influence of the distribution of bubble size and the physicochemical composition of the foam.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Juliette Pierre, Reine-Marie Guillermic, Florence Elias, Wiebke Drenckhan, Valentin Leroy. Acoustic characterisation of liquid foams with an impedance tube. The European Physical Journal E, 2013; 36 (10) DOI: 10.1140/epje/i2013-13113-1

Cite This Page:

Springer Science+Business Media. "Uncovering liquid foam's bubbly acoustics." ScienceDaily. ScienceDaily, 17 October 2013. <www.sciencedaily.com/releases/2013/10/131017080302.htm>.
Springer Science+Business Media. (2013, October 17). Uncovering liquid foam's bubbly acoustics. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2013/10/131017080302.htm
Springer Science+Business Media. "Uncovering liquid foam's bubbly acoustics." ScienceDaily. www.sciencedaily.com/releases/2013/10/131017080302.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins