Featured Research

from universities, journals, and other organizations

Spinning atoms in light crystals

Date:
October 29, 2013
Source:
Max Planck Institute of Quantum Optics
Summary:
After more than 40 years of intense research, experimental physicists still seek to explore the rich behavior of electrons confined to a two-dimensional crystalline structure exposed to large magnetic fields. Now scientists have developed a new experimental method to simulate these systems using a crystal made of neutral atoms and laser light. In such artificial quantum matter, the atoms could be exposed to a uniform effective magnetic field several thousand times stronger than in typical condensed matter systems.

Cyclotron orbits of atoms exposed to extremely strong effective magnetic fields in specially engineered light crystals. The effective field strengths realized in the experiment correspond to tens of thousands of Tesla magnetic field strength applied to a real material. In the experiment the celebrated Hofstadter-Harper as well as the Quantum Spin Hall Hamiltonian could thereby be implemented.
Credit: Image courtesy of Max Planck Institute of Quantum Optics

After more than 40 years of intense research, experimental physicists still seek to explore the rich behaviour of electrons confined to a two-dimensional crystalline structure exposed to large magnetic fields. Now a team of scientists working with Prof. Immanuel Bloch (Chair for Experimental Physics at the Ludwig-Maximilians-Universitδt Munich and Director at MPQ) in collaboration with the theoretical physicist Dr. Belιn Paredes (CSIC/UAM Madrid) developed a new experimental method to simulate these systems using a crystal made of neutral atoms and laser light. In such artificial quantum matter, the atoms could be exposed to a uniform effective magnetic field several thousand times stronger than in typical condensed matter systems.

Related Articles


Charged particles in a magnetic field experience a force perpendicular to their direction of motion -- the Lorentz force -, which makes them move on circular (cyclotron) orbits in a plane perpendicular to the magnetic field. A sufficiently strong magnetic field can thereby dramatically change the properties of a material, giving rise to novel quantum phenomena such as the Quantum Hall effect. The cyclotron orbits shrink with increasing magnetic field. For typical field strengths, their size is much larger than the distance between neighbouring ions in the material, and the role of the crystal is negligible. However, for extremely large magnetic fields the two length scales become comparable and the interplay between the magnetic field and the crystal potential leads to striking new effects. These are manifested for instance in a fractal structure of the energy spectrum, which was first predicted by Douglas Hofstadter in 1976 and is known as the Hofstadter's butterfly. Many intriguing electronic material properties are related to it, but so far experiments could not explore the full complexity of the problem.

For real materials, entering the Hofstadter regime is typically very challenging because the spacing between neighbouring ions is very small. Therefore inaccessibly large magnetic fields have to be applied. One solution is to synthesize artificial materials with effectively larger lattice constants, such as in two superimposed sheets of graphene and boron-nitride.

The experiments performed by the Munich research team follow an alternative approach. In their experiments large magnetic fields are created artificially by exposing ultracold atoms to specially designed laser fields. The system consists of Rubidium atoms cooled to very low temperatures, which are confined in a period structure formed by standing waves of laser light. "Atoms can only sit in regions of high light intensities and arrange in a 2D structure similar to eggs in an egg carton," explains Monika Aidelsburger, a physicist in the team of Professor Bloch. "The laser beams play the role of the ion crystal and the atoms the one of the electrons."

Since the atoms are neutral, however, they do not experience a Lorentz force in the presence of an external magnetic field. The challenge was to develop a technique that mimics the Lorentz force for neutral particles. A combination of tilting the lattice and shaking it simultaneously with an additional pair of crossed laser beams allows the atoms to move in the lattice and perform a cyclotron-like motion similar to charged particles in a magnetic field. In this way, the team succeeded in achieving strong artificial magnetic fields, high enough to access the regime of the Hofstadter butterfly.

In addition, the researchers were able to realize what is known as the Spin Hall Effect, i.e. two particles with opposite spin experience a magnetic field of the same strength but pointing in the opposite direction. As a consequence, the direction of the Lorentz force is opposite for the two spins and therefore the cyclotron-motion is reversed. In their experiments the two spin states were effectively realized by two different states of the Rubidium atoms.

In future experiments the method employed by the researchers could be used to explore the rich physics of the Hofstadter model using the clean and well-controlled environment of ultracold-atoms in optical lattices. Various new experimental techniques such as the quantum gas microscope to detect single atoms could contribute to a deeper understanding of the material properties by directly looking at the microscopic motion of the particles in the lattice. The new method might also open the door for the exploration of novel quantum phases of matter under extreme experimental conditions.


Story Source:

The above story is based on materials provided by Max Planck Institute of Quantum Optics. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, I. Bloch. Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices. Physical Review Letters, 2013; 111 (18) DOI: 10.1103/PhysRevLett.111.185301

Cite This Page:

Max Planck Institute of Quantum Optics. "Spinning atoms in light crystals." ScienceDaily. ScienceDaily, 29 October 2013. <www.sciencedaily.com/releases/2013/10/131029101544.htm>.
Max Planck Institute of Quantum Optics. (2013, October 29). Spinning atoms in light crystals. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2013/10/131029101544.htm
Max Planck Institute of Quantum Optics. "Spinning atoms in light crystals." ScienceDaily. www.sciencedaily.com/releases/2013/10/131029101544.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) — Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins