Featured Research

from universities, journals, and other organizations

'Shakers' help engineers develop inexpensive system for testing condition of bridges

Date:
October 29, 2013
Source:
University of Arkansas, Fayetteville
Summary:
Engineering researchers have developed a novel dynamic testing system for characterizing and evaluating the structural condition of short- to medium-span bridges – structures up to 300 feet long.

Three hundred and fifty feet above the East River, Kirk Grimmelsman inspects the Throgs Neck Bridge in New York City.
Credit: Image courtesy of University of Arkansas, Fayetteville

Engineering researchers at the University of Arkansas have developed a new and inexpensive system to test the structural condition of short- to medium-span bridges.

The system employs a network of tactile transducers -- small-scale, inexpensive and off-the-shelf devices that create the sensation of shaking through feedback of low-frequency sound waves. These devices, known as "shakers," are normally used in home entertainment systems and amusement park rides to enhance user experience.

"The compact size of the tactile transducers and their supporting electronics makes them ideal for executing controlled vibration testing of bridges without disrupting the traffic on the structures," said Kirk Grimmelsman, assistant professor of civil engineering. "These devices can replicate practically any type of dynamic excitation, including random noise, impulses and harmonic signals."

There are roughly 600,000 bridges in the United States, the overwhelming majority of which are 300 feet or shorter. The Federal Highway Administration maintains the National Bridge Inventory, a database containing safety and structural information on all U.S. bridges that carry vehicles. The data are used to analyze and judge the condition of bridges. As part of the requirements of the inventory, specially trained engineers must visually inspect each bridge every two years. Many bridge engineers consider the qualitative data provided by visual inspections to be less than optimal for cost-effective and reliable maintenance of the nation's inventory of aging bridges. In recent years there has been a greater effort to use modern technology to provide more quantitative data for assessing the condition and safety of deteriorating bridges.

Grimmelsman's work is part of this effort. He has performed a variety of full-scale testing programs on numerous bridges, including the Brooklyn Bridge and New York City's heavily traveled Throgs Neck Bridge. His research focuses on investigating scientific, quantitative methods for testing the safety and structural integrity of bridges. The method he uses is called dynamic testing, an experimental approach that quantitatively characterizes and evaluates bridges. The two main approaches for dynamic testing are experimental modal analysis, also called forced-vibration testing, and operational modal analysis, frequently referred to as ambient vibration testing.

With forced vibration testing, the bridge is dynamically excited by a controlled and measurable source, such as shakers and impact hammers. This allows engineers to control the inputs used for testing. The relationship between the dynamic inputs and structural response provides a meaningful description of how the bridge is currently behaving. However, this approach has depended on a single vibration-inducing device, which is large, heavy and expensive, costing a minimum of $20,000. The device and its supporting equipment also interfere with traffic on bridges and are not practical for long-term measurements to track the condition of bridges as they age and deteriorate.

Ambient vibration testing, by far the most popular form of dynamic testing for bridges, relies on natural environmental sources such as wind, microtremors, waves and operating traffic on and near the structure, all of which make the bridge vibrate. Although it has the important advantages of being inexpensive and not disruptive to traffic, ambient vibration testing is more uncertain because researchers cannot control or measure the forces that are making the structure vibrate.

In recent years, Grimmelsman has sought to develop a more reliable, practical and less expensive way to perform forced vibration testing. He considered using small and inexpensive shakers to vibrate a bridge from many input locations spread out across the structure. He originally planned to modify subwoofer speakers to serve as shakers, until a graduate student in his laboratory mentioned "bass shakers," devices that create the sensation of shaking with low frequency audio signals.

Grimmelsman and students Jessica Carreiro and Eric Fernstrom modified and experimented with a variety of available types of bass shakers, also known as tactile transducers. The devices they studied were all small and portable -- weighing less than 10 pounds. Grimmelsman designed and built a bridge-testing system with these devices that cost less than $500 per shaker.

The researchers later installed 12 tactile transducers on the underside of a rural highway bridge to evaluate how the shakers would operate. As a network, the system produced vibrations with reasonable force over a broad range of frequencies. The bridge vibrations induced by the shakers were also much larger than those due to wind and other natural sources.

"The bridge test demonstrated that a system of these devices could dynamically excite a full-scale structure in a controlled manner to produce vibration responses with less uncertainty and more uniformity than those resulting from natural sources and traffic," Grimmelsman said.

The testing was the first attempt by any researchers to dynamically excite a full-scale bridge in the field using a large number of controlled inputs at the same time.

Grimmelsman recently presented the research at the 2013 American Society of Civil Engineers Structures Congress. He and his team are conducting further bridge tests with their system and preparing their results for publication.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University of Arkansas, Fayetteville. "'Shakers' help engineers develop inexpensive system for testing condition of bridges." ScienceDaily. ScienceDaily, 29 October 2013. <www.sciencedaily.com/releases/2013/10/131029142845.htm>.
University of Arkansas, Fayetteville. (2013, October 29). 'Shakers' help engineers develop inexpensive system for testing condition of bridges. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2013/10/131029142845.htm
University of Arkansas, Fayetteville. "'Shakers' help engineers develop inexpensive system for testing condition of bridges." ScienceDaily. www.sciencedaily.com/releases/2013/10/131029142845.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com
New York Auto Show Highlights Latest in Car Tech

New York Auto Show Highlights Latest in Car Tech

AP (Apr. 16, 2014) With more than 1 million visitors annually, the New York International Auto Show is one of the most important shows for the U.S. auto industry. This year's show featured the latest in high technology, and automotive bling. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins