Featured Research

from universities, journals, and other organizations

Vibrating micro plates bring order to overcrowded radio spectrum

Date:
October 30, 2013
Source:
University of Twente
Summary:
GSM, WiFi, Bluetooth, 4G, GPS: a smartphone already has to handle many wireless standards. And this number will only increase further. There are still no good filters to keep all those future standards separate. Researchers have now taken an important step with a new type of filter, based on micromechanics.

The two square rectangles in the center of this SEM picture are the two resonators.
Credit: Image courtesy of University of Twente

GSM, WiFi, Bluetooth, 4G, GPS: a smartphone already has to handle many wireless standards. And this number will only increase further. There are still no good filters to keep all those future standards separate. Researchers at the MESA+ Institute for Nanotechnology have taken an important step with a new type of filter, based on micromechanics. They have published their finding in Applied Physics Letters.

Filters that can be accurately tuned to the frequency band you want to receive as a user are becoming increasingly important. Otherwise, if a nearby signal is much stronger, it drowns out the signal you want to receive. The number of available frequencies is limited, so it is becoming ever busier. Intelligent use of the airwaves, by utilising every available piece, is becoming more important. The filters now presented by the researchers are based on micromechanical resonators and can be accurately tuned to the desired frequency.

One of the reasons for choosing a mechanical solution is that the conventional filter consists of an inductor and a capacitor, an 'LC circuit'. Especially a good quality inductor is hard to achieve on a chip. The result would be: separate LC circuits for each frequency band, mounted outside the chip, which would take up too much space. New solutions are already being sought all over the world. The current standard is the electromechanical filter called Surface Acoustic Wave filter, but this, too, requires too much space if you need several of them.

Vibration

The solution presented by the researchers consists of two mechanical resonators. They vibrate at an adjustable frequency thanks to the piezoelectric material PZT. This material is applied to metal. Normally, the piezoelectric material vibrates perpendicular to the metal and the thickness of the layer determines the frequency. However,the frequency can be varied by making it vibrate in the same direction as the metal. Two resonators are used, which are not connected mechanically or electrically. By means of the intelligent handling of the input and output signals of the two resonators, adverse 'parasitic' effects are negated. This is done by subtracting the output signals, while the input signals are 'in phase'. The result is a selective filter -- fourth order -- that passes a limited part of the band and weakens the frequencies above and below. It can be accurately tuned with the vibrating frequencies of the two resonators. The filter presented by the researchers in Applied Physics Letters, operates at about 400 Megahertz. That is still too low for mobile applications, but new versions already reach higher frequencies, and Gigahertz frequencies needed for smartphones are feasible, according to the researchers.

The researchers also expect that these resonators can be integrated on the chip or directly 'bonded' to the chip: they are much smaller than inductors. It therefore becomes possible to apply fifty resonator pairs, which facilitates flexible use of frequencies. This is needed, for example, in 'cognitive radio', that uses each piece of free space as it becomes available and then jumps to another frequency when needed.

The research was conducted by the Transducers Science and Technology Group of the University of Twente MESA+ Institute for Nanotechnology in collaboration with the CTIT Institute Integrated Circuit Design group. There was also cooperation with the spinoff company SolMateS, which is specialised in making piezoelectric layers on chips. The project is financed by Dutch Technology Foundation STW.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hadi Yagubizade, Milad Darvishi, Miko C. Elwenspoek, Niels R. Tas. A 4th-order band-pass filter using differential readout of two in-phase actuated contour-mode resonators. Applied Physics Letters, 2013; 103 (17): 173517 DOI: 10.1063/1.4826944

Cite This Page:

University of Twente. "Vibrating micro plates bring order to overcrowded radio spectrum." ScienceDaily. ScienceDaily, 30 October 2013. <www.sciencedaily.com/releases/2013/10/131030093041.htm>.
University of Twente. (2013, October 30). Vibrating micro plates bring order to overcrowded radio spectrum. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/10/131030093041.htm
University of Twente. "Vibrating micro plates bring order to overcrowded radio spectrum." ScienceDaily. www.sciencedaily.com/releases/2013/10/131030093041.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins