Featured Research

from universities, journals, and other organizations

Gimball: A crash-happy flying robot

Date:
October 30, 2013
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Gimball bumps into and ricochets off of obstacles, rather than avoiding them. This 34-cm in diameter spherical flying robot buzzes around the most unpredictable, chaotic environments, without the need for fragile detection sensors.

Przemyslaw Mariusz Kornatowski (left) and Adrien Briod (right) hold the Gimball.
Credit: EPFL / Alain Herzog

Gimball bumps into and ricochets off of obstacles, rather than avoiding them. This 34 centimeter in diameter spherical flying robot buzzes around the most unpredictable, chaotic environments, without the need for fragile detection sensors. This resiliency to injury, inspired by insects, is what sets it apart from other flying robots. Gimball is protected by a spherical, elastic cage which enables it to absorb and rebound from shocks. It keeps its balance using a gyroscopic stabilization system. When tested in the forests above Lausanne, Switzerland, it performed brilliantly, careening from tree trunk to tree trunk but staying on course. It will be presented in public at the IREX conference in Tokyo, Japan from November 5-9, 2013.

Related Articles


Powered by twin propellers and steered by fins, Gimball can stay on course despite its numerous collisions. This feat was a formidable challenge for EPFL PhD student Adrien Briod. "The idea was for the robot's body to stay balanced after a collision, so that it can keep to its trajectory," he explains. "Its predecessors, which weren't stabilized, tended to take off in random directions after impact." With colleague Przemyslaw Mariusz Kornatowski, Briod developed the gyroscopic stabilization system consisting of a double carbon-fiber ring that keeps the robot oriented vertically, while the cage absorbs shocks as it rotates.

Going sensor-free: insect-inspired design

Most robots navigate using a complex network of sensors, which allow them to avoid obstacles by reconstructing the environment around them. It's an inconvenient method, says Briod. "The sensors are heavy and fragile. And they can't operate in certain conditions, for example if the environment is full of smoke."

Gimball's robustness lies in its technological simplicity, says Briod. "Flying insects handle collisions quite well. For them, shocks aren't really accidents, because they're designed to bounce back from them. This is the direction we decided to take in our research."

Navigating chaotic environments

The flying robot is prepared to deal with the most difficult terrain out there. "Our objective was exactly that -- to be able to operate where other robots can't go, such as a building that has collapsed in an earthquake. The on-board camera can provide valuable information to emergency personnel." The scientist had an opportunity to test his prototype in a Swiss pine forest. Fitted out with just a compass and an altitude sensor, Gimball demonstrated its ability to maintain its course over several hundred meters despite colliding with several tree trunks along the way.

Gimball is the latest in a long line of colliding robots developed in the laboratory of EPFL professor Dario Floreano. But its stabilization system, spherical shape and ultralight weight -- barely 370 grams -- demonstrate the potential of the concept better than ever before. "The mechanics must also be intelligent, since complex obstacle avoidance systems are not sufficient," says Briod. Even so, he insists, "we're not yet ready to compete with our model. Insects are still superior."


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Gimball: A crash-happy flying robot." ScienceDaily. ScienceDaily, 30 October 2013. <www.sciencedaily.com/releases/2013/10/131030103903.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2013, October 30). Gimball: A crash-happy flying robot. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/10/131030103903.htm
Ecole Polytechnique Fédérale de Lausanne. "Gimball: A crash-happy flying robot." ScienceDaily. www.sciencedaily.com/releases/2013/10/131030103903.htm (accessed October 31, 2014).

Share This



More Computers & Math News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Samsung's Incredible Shrinking Smartphone Profits

Samsung's Incredible Shrinking Smartphone Profits

Reuters - Business Video Online (Oct. 30, 2014) — The world's top mobile maker is under severe pressure, delivering a 60 percent drop in Q3 profit as its handset business struggles. Turning it around may not prove easy, says Reuters' Jon Gordon. Video provided by Reuters
Powered by NewsLook.com
Ban On Wearable Cameras In Movie Theaters Surprises No One

Ban On Wearable Cameras In Movie Theaters Surprises No One

Newsy (Oct. 30, 2014) — The Motion Picture Association of America and the National Association of Theatre Owners now prohibit wearable cameras such as Google Glass. Video provided by Newsy
Powered by NewsLook.com
Microsoft Launches Fitness Band After Accidental Reveal

Microsoft Launches Fitness Band After Accidental Reveal

Newsy (Oct. 30, 2014) — Microsoft accidentally revealed its upcoming fitness band on Wednesday, so the company went ahead and announced it. Video provided by Newsy
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins