Featured Research

from universities, journals, and other organizations

Making electrical contact along 1-D edge of 2-D materials

Date:
October 31, 2013
Source:
City College of New York
Summary:
Scientists have demonstrated it is possible for an atomically thin two-dimensional material to have electrical contact along its one-dimensional edge. The contact architecture offers a new assembly technique for layered materials that prevents contamination at interfaces.

This is an illustration of an encapsulated two-dimensional graphene sheet that is electrically contacted only along its one-dimensional edge.
Credit: Columbia Engineering; Illustration, James Hedberg and Cory Dean

Dr. Cory Dean, assistant professor of physics at The City College of New York, is the lead author of a paper published today in the journal Science that demonstrates it is possible for an atomically thin two-dimensional (2D) material to have electrical contact along its one-dimensional (1D) edge. The contact architecture offers a new assembly technique for layered materials that prevents contamination at interfaces.

Professor Dean conducted the research as a postdoctoral fellow at Columbia University, working with Professor of Electrical Engineering Ken Shepard and Professor of Mechanical Engineering James Hone, the paper's co-authors. The new method, which was developed using graphene as the two-dimensional model, resulted in the cleanest graphene produced to date.

"Two-dimensional materials such as graphene, which are just one atom thick, can have their electrical properties externally modified," Professor Dean said. "However, because the materials are extremely sensitive to the environment, any external contamination quickly degrades performance."

The need to protect the material from contamination while still allowing electrical access has been a roadblock to development of graphene-based technologies, he added. "By making contact only to the 1D edge of graphene, we have developed a fundamentally new way to bridge our 3D world to this fascinating 2D world without disturbing its inherent properties. This virtually eliminates external contamination and finally allows graphene to show its true potential in electronic devices."

"Our novel edge-contact geometry provides more efficient contact than the conventional geometry without the need for further complex processing," added Professor Shepard. "There are now many more possibilities in the pursuit of both device applications and the pure physics of clean systems."

The researchers fully encapsulated the 2D graphene layer in a sandwich of thin insulating boron nitride crystals. To do this, they employed a new technique in which the top boron nitride crystal was used to sequentially pick up the other layers in the stack. "This technique completely eliminated any contamination between layers," Professor Dean noted.

Once they created the stack, they etched it to expose the edge of the graphene layer. Then they evaporated metal onto the edge to create the electrical contact. By making contact along the edge, the team realized a 1D interface between the 2D active layer and 3D metal electrode.

Even though electrons entered only at the 1D atomic edge of the graphene sheet, the contact resistance was remarkably low, reaching 100 ohms per micron of contact width -- a value smaller than what is typically achieved for contacts at the graphene top surface.

Continuing their collaboration, the team is now working on applying these techniques to develop new hybrid materials by mechanical assembly and edge contact. They plan to draw from the full suite of available 2D layered materials, including graphene, boron nitride, transition metal dichalcogenides (TMDCs), transition metal oxides (TMOs), and topological insulators (TIs).

"With so much current research focused on developing new devices by integrating layered 2D systems, potential applications are incredible, from vertically structured transistors, tunneling based devices and sensors, photoactive hybrid materials, to flexible and transparent electronics," added Professor Hone.


Story Source:

The above story is based on materials provided by City College of New York. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, C. R. Dean. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 2013; 342 (6158): 614 DOI: 10.1126/science.1244358

Cite This Page:

City College of New York. "Making electrical contact along 1-D edge of 2-D materials." ScienceDaily. ScienceDaily, 31 October 2013. <www.sciencedaily.com/releases/2013/10/131031142740.htm>.
City College of New York. (2013, October 31). Making electrical contact along 1-D edge of 2-D materials. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/10/131031142740.htm
City College of New York. "Making electrical contact along 1-D edge of 2-D materials." ScienceDaily. www.sciencedaily.com/releases/2013/10/131031142740.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


New Techniques Produce Cleanest Graphene Yet

Oct. 31, 2013 Researchers demonstrate for the first time that it's possible to electrically contact an atomically thin 2D material only along its 1D edge. With this new contact architecture, they've ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins