Featured Research

from universities, journals, and other organizations

The secrets of a bug's flight

Date:
November 12, 2013
Source:
American Institute of Physics (AIP)
Summary:
Researchers have identified some of the physics that may explain how insects can so quickly recover from a midflight stall -- unlike conventional fixed wing aircraft, where stalls often lead to crash landings. The analysis, in which the researchers studied the flow around a rotating model wing, improves the understanding of how insects fly and informs the design of small flying robots built for intelligence gathering, surveillance, search-and-rescue, and other purposes.

The left image represents a non-rotating wing in the presence of incident flow; it exhibits a stalled state. The right image, taken shortly after the onset of rotation (at 36 degrees), shows a stable, lift-generating flow structure.
Credit: Matthew Bross

Researchers have identified some of the underlying physics that may explain how insects can so quickly recover from a stall in midflight -- unlike conventional fixed wing aircraft, where a stalled state often leads to a crash landing.

The analysis, in which the researchers studied the flow around a rotating model wing, improves the understanding of how insects fly and informs the design of small flying robots built for intelligence gathering, surveillance, search-and-rescue, and other purposes. The work is described in the journal Physics of Fluids.

An insect such as a fruit fly hovers in the air by flapping its wings -- a complex motion akin to the freestyle stroke in swimming. The wing rotates in a single plane, and by varying the angle between the plane and its body, the insect can fly forward from a hovering position.

To simulate the basics of this action, Matthew Bross and colleagues at Lehigh University in Bethlehem, PA, studied how water flows around a rotating model wing consisting of a rectangular piece of acrylic that is twice as long as it is wide. The rotation axis is off to the side of the wing and parallel to its width, so that it rotates like half of an airplane propeller. To simulate forward motion -- a scenario in which the insect is accelerating or climbing -- the researchers pumped water in the direction perpendicular to the plane of rotation.

"We were able to identify the development of flow structure over an insect-scaled wing over a range of forward flight velocities," Bross explained. The researchers made detailed three-dimensional computer visualizations of the flow around the wing, finding that a leading-edge vortex -- a feature crucial for providing lift -- almost immediately appears once the wing starts to rotate after a stalled state.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Bross, C. A. Ozen, D. Rockwell. Flow structure on a rotating wing: Effect of steady incident flow. Physics of Fluids, 2013; 25 (8): 081901 DOI: 10.1063/1.4816632

Cite This Page:

American Institute of Physics (AIP). "The secrets of a bug's flight." ScienceDaily. ScienceDaily, 12 November 2013. <www.sciencedaily.com/releases/2013/11/131112095343.htm>.
American Institute of Physics (AIP). (2013, November 12). The secrets of a bug's flight. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2013/11/131112095343.htm
American Institute of Physics (AIP). "The secrets of a bug's flight." ScienceDaily. www.sciencedaily.com/releases/2013/11/131112095343.htm (accessed September 15, 2014).

Share This



More Matter & Energy News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) — Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins