Featured Research

from universities, journals, and other organizations

Building a better tokamak by blowing giant plasma bubbles: How magnetic reconnection -- the force behind solar flares -- could initiate fusion in a tokamak reactor

Date:
November 13, 2013
Source:
American Physical Society
Summary:
New simulations shed light on the mechanisms at work in magnetic bubbles inside tokomak fusion machines, clarifying what happens at various stages in the ultrafast phenomenon.

(a) This is a sequence of visible fast camera images of a CHI discharge inside NSTX. The top image shows the expansion of the CHI discharge one thousandth of a second after it is initiated. As shown in the third frame, within three thousandths of a second the plasma has fully filled the vessel; (b) the magnetic structure of a bubble in NSTX as simulated by the NIMROD code.
Credit: Fatima Ebrahimi, Roger Raman, and Edwin Bick Hooper

Advanced computer codes are helping scientists reimagine how they might initiate a fusion reaction in the center of a tokamak, a doughnut-shaped experimental vessel. These simulations are also shedding new light on complex phenomena in magnetic fields.

Plasma confinement devices based on the tokamak concept rely on a solenoid that runs through the center of the device to generate the initial current. But solenoids have a limited pulse length and cannot sustain the initial current indefinitely in a steady-state reactor. Finding a way to eliminate the solenoid would remove a large component from the center of the tokamak, make the device simpler and less expensive, and allow the freed space in the center to be used to optimize the tokamak and make it more efficient.

Now, advanced computer modeling with the NIMROD code -- code specifically designed to facilitate these simulations -- has begun to describe the mechanism behind a magnetic structure that could replace the solenoid to start the initial current. This modeling simulates an enormous magnetic bubble that carries 300,000 amperes of current, or 1,500 times the amount that flows into a home.

Researchers conducting experiments on the National Spherical Torus Experiment (NSTX) at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced the actual bubble through a method known as transient Coaxial Helicity Injection (CHI). Originally developed on the much smaller HIT-II device at the University of Washington, the method has been improved on the NSTX spherical tokamak, which has a volume 30 times larger.

CHI uses a process called magnetic reconnection to create the bubble. This process takes place when magnetic field lines break apart and reconnect with a burst of energy. The type of reconnection that occurs during transient CHI experiments in NSTX is similar to the process that produces solar flares -- the magnetic strings, or filaments, ejected from the surface of the sun. These experiments also represent the first-ever occurrence of forced magnetic reconnection during an experiment on a large-scale fusion facility. CHI creates a bubble inside the NSTX by driving currents along magnetic filaments in the plasma. The sequence of camera images in figure 1a, below, shows the bubble being generated in the lower part of NSTX and expanding to fill the entire vessel.

The NIMROD simulations conducted by the research team shed important light on the mechanisms at work in the magnetic bubble, clarifying what happens at various stages in the ultrafast phenomenon:

  • First, magnetic forces arising from the current on the surface of the filaments overcome the rubber-band-like tension that could reverse the strings' expansion. This allows the strings to expand and fill the vessel.
  • Second, when the current is suddenly turned off, the expanded strings seek a stable configuration.
  • Third, the simulations show that new forces then take over. These bring the magnetic strings in the lower part of the NSTX vessel closer together until they reconnect and generate a magnetic bubble.
  • Finally, the simulations are now starting to identify the different parameters needed to generate a high-quality magnetic structure.

This work is also related to some universal aspects of magnetic reconnection physics, including the processes that occur on the surface of the sun. These exciting results are the subject of an invited talk and other supporting presentations at this meeting. CHI research on NSTX is a collaboration between researchers from Princeton University, the University of Washington, the Princeton Plasma Physics Laboratory and the Lawrence Livermore National Laboratory.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Building a better tokamak by blowing giant plasma bubbles: How magnetic reconnection -- the force behind solar flares -- could initiate fusion in a tokamak reactor." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113125833.htm>.
American Physical Society. (2013, November 13). Building a better tokamak by blowing giant plasma bubbles: How magnetic reconnection -- the force behind solar flares -- could initiate fusion in a tokamak reactor. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2013/11/131113125833.htm
American Physical Society. "Building a better tokamak by blowing giant plasma bubbles: How magnetic reconnection -- the force behind solar flares -- could initiate fusion in a tokamak reactor." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113125833.htm (accessed August 31, 2014).

Share This




More Space & Time News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins