Featured Research

from universities, journals, and other organizations

Jupiter mystery solved: Why the giant planet's mysterious Great Red Spot has not disappeared

Date:
November 14, 2013
Source:
American Physical Society's Division of Fluid Dynamics
Summary:
Based on what scientists understand about fluid dynamics, Jupiter’s Great Red Spot should have disappeared centuries ago. Astronomers now think they can explain why. Their work also provides insight into persistent ocean eddies and vortices that contribute to star and planet formation.

This is Jupiter's Great Red Spot in 2000 as seen by NASA's Cassini orbiter.
Credit: NASA/JPL/Space Science Institute

Jupiter's Great Red Spot is one of the solar system's most mysterious landmarks. Based on what scientists understand about fluid dynamics, this massive storm -- which is big enough to engulf Earth two or three times over -- should have disappeared centuries ago.

Pedram Hassanzadeh, a postdoctoral fellow at Harvard University, and Philip Marcus, a professor of fluid dynamics at the University of California, Berkeley, think they can explain why. Their work, which Hassanzadeh will present at the annual meeting of the American Physical Society's Division of Fluid Dynamics in Pittsburgh on November 25, also provides insight into persistent ocean eddies and vortices that contribute to star and planet formation.

"Based on current theories, the Great Red Spot should have disappeared after several decades. Instead, it has been there for hundreds of years," said Hassanzadeh, who is a post-doctoral fellow at Harvard's Center for the Environment and the Department of Earth and Planetary Sciences.

Many processes dissipate vortices like the Red Spot, Hassanzadeh explained. The turbulence and waves in and around the Red Spot sap the energy of its winds. The vortex also loses energy by radiating heat. Finally, the Red Spot sits between two strong jet streams that flow in opposite directions and may slow down its spinning.

Some researchers argue that the Red Spot gains energy by absorbing smaller vortices. "Some computer models show that large vortices would live longer if they merge with smaller vortices, but this does not happen often enough to explain the Red Spot's longevity," Marcus said.

To probe the mystery of the Red Spot's survival, Hassanzadeh and Marcus built a model of their own. It differed from existing models because it was fully three dimensional and had very high resolution. Many vortex models focus on the swirling horizontal winds, where most of the energy resides. Vortices also have vertical flows, but these have much less energy.

"In the past, researchers either ignored the vertical flow because they thought it was not important, or they used simpler equations because it was so difficult to model," Hassanzadeh said.

Yet the vertical motion turns out to hold the key to the Red Spot's persistence. As the vortex loses energy, the vertical flow transports hot gases from above and cold gases from below the vortex toward its center, restoring part of its lost energy.

The model also predicts a radial flow, which sucks winds from the high-speed jet streams toward the vortex center. This pumps energy into the vortex, enabling it to last longer.

According to Hassanzadeh, the same vertical flow could explain why oceanic vortices, such as those formed near the Straits of Gibraltar, can last for years in the Atlantic Ocean. Their vertical flow plays a role in the ocean ecosystem by lifting nutrients to the surface.

Vortices may also midwife the formation of stars and planets, lasting for millions of years as they pull interstellar dust and rocks into large masses.

Hassanzadeh and Marcus know their model does not entirely explain the Red Spot's long life span. They believe the occasional absorption of smaller vortices, consistent with observation, may provide the extra energy needed for hundreds of years of life. They have begun modifying their computer model to test this thesis.

Perhaps, one day, Jupiter's Great Red Spot will seem a little less mysterious.


Story Source:

The above story is based on materials provided by American Physical Society's Division of Fluid Dynamics. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society's Division of Fluid Dynamics. "Jupiter mystery solved: Why the giant planet's mysterious Great Red Spot has not disappeared." ScienceDaily. ScienceDaily, 14 November 2013. <www.sciencedaily.com/releases/2013/11/131114131929.htm>.
American Physical Society's Division of Fluid Dynamics. (2013, November 14). Jupiter mystery solved: Why the giant planet's mysterious Great Red Spot has not disappeared. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/11/131114131929.htm
American Physical Society's Division of Fluid Dynamics. "Jupiter mystery solved: Why the giant planet's mysterious Great Red Spot has not disappeared." ScienceDaily. www.sciencedaily.com/releases/2013/11/131114131929.htm (accessed April 24, 2014).

Share This



More Space & Time News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nuclear-Level Asteroids Might Be More Common Than We Realize

Nuclear-Level Asteroids Might Be More Common Than We Realize

Newsy (Apr. 23, 2014) The B612 Foundation says asteroids strike Earth much more often than previously thought, and are hoping to build an early warning system. Video provided by Newsy
Powered by NewsLook.com
NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com
SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins