Featured Research

from universities, journals, and other organizations

Quantum world record smashed: Quantum state survives at room temperature for 39 minutes

Date:
November 14, 2013
Source:
University of Oxford
Summary:
A normally fragile quantum state has been shown to survive at room temperature for a world record 39 minutes, overcoming a key barrier towards building ultrafast quantum computers.

A normally fragile quantum state has been shown to survive at room temperature for a world record 39 minutes by Oxford University researchers. An artistic rendition of a 'bound exciton' quantum state used to prepare and read out information stored in the form of quantum bits.
Credit: 2013 Stef Simmons with CC BY

A normally fragile quantum state has been shown to survive at room temperature for a world record 39 minutes, overcoming a key barrier towards building ultrafast quantum computers.

An international team including Stephanie Simmons of Oxford University, UK, report in this week's Science a test performed by Mike Thewalt of Simon Fraser University, Canada, and colleagues. In conventional computers data is stored as a string of 1s and 0s. In the experiment quantum bits of information, 'qubits', were put into a 'superposition' state in which they can be both 1s and 0 at the same time -- enabling them to perform multiple calculations simultaneously.

In the experiment the team raised the temperature of a system, in which information is encoded in the nuclei of phosphorus atoms in silicon, from -269 C to 25 C and demonstrated that the superposition states survived at this balmy temperature for 39 minutes -- outside of silicon the previous record for such a state's survival at room temperature was around two seconds. The team even found that they could manipulate the qubits as the temperature of the system rose, and that they were robust enough for this information to survive being 'refrozen' (the optical technique used to read the qubits only works at very low temperatures).

'39 minutes may not seem very long but as it only takes one-hundred-thousandth of a second to flip the nuclear spin of a phosphorus ion -- the type of operation used to run quantum calculations -- in theory over 2 million operations could be applied in the time it takes for the superposition to naturally decay by one percent. Having such robust, as well as long-lived, qubits could prove very helpful for anyone trying to build a quantum computer,' said Stephanie Simmons of Oxford University's Department of Materials, an author of the paper.

'This opens up the possibility of truly long-term coherent information storage at room temperature,' said Mike Thewalt of Simon Fraser University.

The team began with a sliver of silicon doped with small amounts of other elements, including phosphorus. Quantum information was encoded in the nuclei of the phosphorus atoms: each nucleus has an intrinsic quantum property called 'spin', which acts like a tiny bar magnet when placed in a magnetic field. Spins can be manipulated to point up (0), down (1), or any angle in between, representing a superposition of the two other states.

The team prepared their sample at just 4 C above absolute zero (-269 C) and placed it in a magnetic field. Additional magnetic field pulses were used to tilt the direction of the nuclear spin and create the superposition states. When the sample was held at this cryogenic temperature, the nuclear spins of about 37 per cent of the ions -- a typical benchmark to measure quantum coherence -- remained in their superposition state for three hours. The same fraction survived for 39 minutes when the temperature of the system was raised to 25 C.

'These lifetimes are at least ten times longer than those measured in previous experiments,' said Stephanie Simmons. 'We've managed to identify a system that seems to have basically no noise. They're high-performance qubits.'

There is still some work ahead before the team can carry out large-scale quantum computations. The nuclear spins of the 10 billion or so phosphorus ions used in this experiment were all placed in the same quantum state. To run calculations, however, physicists will need to place different qubits in different states. 'To have them controllably talking to one another -- that would address the last big remaining challenge,' said Simmons.


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, M. L. W. Thewalt. Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28. Science, 2013; 342 (6160): 830 DOI: 10.1126/science.1239584

Cite This Page:

University of Oxford. "Quantum world record smashed: Quantum state survives at room temperature for 39 minutes." ScienceDaily. ScienceDaily, 14 November 2013. <www.sciencedaily.com/releases/2013/11/131114142129.htm>.
University of Oxford. (2013, November 14). Quantum world record smashed: Quantum state survives at room temperature for 39 minutes. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/11/131114142129.htm
University of Oxford. "Quantum world record smashed: Quantum state survives at room temperature for 39 minutes." ScienceDaily. www.sciencedaily.com/releases/2013/11/131114142129.htm (accessed April 17, 2014).

Share This



More Computers & Math News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Heartbleed Hack Leads To Arrest

Heartbleed Hack Leads To Arrest

Newsy (Apr. 17, 2014) A 19-year-old computer science student has been arrested in relation to a data breach of 900 social insurance numbers from Canada's revenue agency. Video provided by Newsy
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins