Featured Research

from universities, journals, and other organizations

Overcoming brittleness: New insights into bulk metallic glass

Date:
November 15, 2013
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Researchers have found a bulk metallic glass based on palladium that's as strong as the best composite bulk metallic glasses and comparable to steel, aluminum and titanium.

In palladium-based bulk metallic glass, the extensive formation and proliferation of shear bands along fan-shaped slip lines results in significant crack-tip blunting.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

From the production of tougher, more durable smart phones and other electronic devices, to a wider variety of longer lasting biomedical implants, bulk metallic glasses are poised to be mainstay materials for the 21st Century. Featuring a non-crystalline amorphous structure, bulk metallic glasses can be as strong or even stronger than steel, as malleable as plastics, conduct electricity and resist corrosion. These materials would seem to have it all save for one problem: they are often brittle, with a poor and uneven resistance to fatigue that makes their reliability questionable. The creation of multicomponent bulk-metallic glass composites is addressing this issue but the problem remains for monolithic metallic glasses, which are major components of bulk metallic composites.

A new study by a collaboration of Berkeley Lab and Caltech researchers may point the way to improving the fatigue resistance of monolithic bulk glasses. The collaboration found that a bulk metallic glass based on palladium displayed a fatigue strength as good as the best composite bulk metallic glasses and comparable to regular polycrystalline structural alloys, such as steel, aluminum and titanium. This study was led by Robert Ritchie, a materials scientist with Berkeley Lab's Materials Sciences Division and Caltech's William Johnson, one of the pioneers in the field of bulk metallic glass fabrication.

"We found that the unexpectedly high fatigue resistance in monolithic palladium-based bulk metallic glass arises from extensive shear-band plasticity that results in a periodic staircase-like crack profile," Ritchie says. "The ease with which shear bands form in this palladium-based glass generates highly serrated cracks that resemble interlocking gear teeth and provide crack-tip blunting and shielding to limit the opening and closing of cracks. The effect is somewhat like trying to speak with a doughnut in your mouth."

Palladium is a metal with a high "bulk-to-shear" stiffness ratio that counteracts the intrinsic brittleness of glassy materials because the energy needed to form shear bands is significantly lower than the energy required to turn these shear bands into cracks.

"The effect of multiple shear-banding is multifold," Ritchie says. "The formation of shear bands leads to extensive crack-tip blunting, which leads to intrinsic toughening, whereas the resulting crack deflections and closures lead to crack-tip shielding, which leads to extrinsic toughening. These mechanisms, together with the high fatigue threshold, provide the major contributions to the excellent fatigue endurance strength shown by the monolithic palladium-based bulk metallic glass."

The results of this study have been published in the Proceedings of the National Academy of Sciences. It is titled "Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism." Ritchie and Johnson are the corresponding authors. Other co-authors are Bernd Gludovatz, Marios Demetriou, Michael Floyd and Anton Hohenwarter.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Gludovatz, M. D. Demetriou, M. Floyd, A. Hohenwarter, W. L. Johnson, R. O. Ritchie. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1317715110

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Overcoming brittleness: New insights into bulk metallic glass." ScienceDaily. ScienceDaily, 15 November 2013. <www.sciencedaily.com/releases/2013/11/131115154502.htm>.
DOE/Lawrence Berkeley National Laboratory. (2013, November 15). Overcoming brittleness: New insights into bulk metallic glass. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2013/11/131115154502.htm
DOE/Lawrence Berkeley National Laboratory. "Overcoming brittleness: New insights into bulk metallic glass." ScienceDaily. www.sciencedaily.com/releases/2013/11/131115154502.htm (accessed August 31, 2014).

Share This




More Matter & Energy News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins