Featured Research

from universities, journals, and other organizations

Computer scientists create new 3-D technique

Date:
November 19, 2013
Source:
University of Texas, Dallas
Summary:
Computer scientists are using a famous mathematician's theory to make 3-D images that are more accurate approximations of the shapes of the original objects.

Guo and his team found that replacing isotropic triangles (part 1) with anisotropic triangles (part 2) in the particle-based method of creating images resulted in smoother representations of objects.
Credit: Image courtesy of University of Texas, Dallas

UT Dallas computer scientists have developed a technique to create 3-D images that finds practical applications of a theory created by a famous mathematician.

This technique uses anisotropic triangles -- triangles with sides that vary in length depending on their direction -- to create 3-D "mesh" computer graphics of more accurate approximations of the shape of the original object, and in a shorter amount of time than current techniques. These types of images are used in movies, video games and computer modeling of various phenomena, such as the flow of water or air across the earth, the deformation and wrinkles of clothes on the human body, or in mechanical and other types of engineering designs. Researchers hope this technique will also lead to greater accuracy in models of human organs to more effectively treat human diseases, such as cancer.

"Anisotropic mesh can provide better simulation results for certain types of problems, for example, in fluid dynamics," said Dr. Xiaohu Guo, associate professor of computer science in the Erik Jonsson School of Engineering and Computer Science whose team created the technique.

The technique finds a practical application of the Nash embedding theorem, which was named after mathematician John Forbes Nash Jr., subject of the Hollywood movie A Beautiful Mind.

"The underlying mathematics we used to solve this problem is rigorous and beautiful," Guo said. "Finding a way to use the theory in a practical application will have great impact in the field."

The computer graphics field represents shapes in the virtual world through triangle mesh. Traditionally, it is believed that isotropic triangles -- where each side of the triangle has the same length regardless of direction -- are the best representation of shapes. However, the aggregate of these uniform triangles can create edges or bumps that are not on the original objects. Because triangle sides can differ in anisotrophic images, creating images with this technique would allow the user flexibility to more accurately represent object edges or folds.

Guo and his team found that replacing isotropic triangles with anisotropic triangles in the particle-based method of creating images resulted in smoother representations of objects. Depending on the curvature of the objects, the technique can generate the image up to 125 times faster than common approaches. For example, 155 seconds to create a circular image with Guo's approach, versus more than 19,500 seconds for a common approach to generate an image of similar quality.

Objects using anisotropic triangles would be of a more accurate quality, and most noticeable to the human eye when it came to wrinkles and movement of clothes on human representatives.

The next step of this research would be to move from representing the surface of 3-D objects to representing 3-D volume.

"If we are going to create accurate representations of human organs, we need to account for the movement of cells below the organ's surface," Guo said.

The research was presented at the Association for Computing Machinery SIGGRAPH conference earlier this year.

Zichun Zhong, research assistant in computer science at UT Dallas was also involved in this research. Researchers from the University of Hong Kong, Inria Nancy Grand Est in France, Nvidia Corporation in California and UT Southwestern Medical Center also participated.


Story Source:

The above story is based on materials provided by University of Texas, Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas, Dallas. "Computer scientists create new 3-D technique." ScienceDaily. ScienceDaily, 19 November 2013. <www.sciencedaily.com/releases/2013/11/131119112402.htm>.
University of Texas, Dallas. (2013, November 19). Computer scientists create new 3-D technique. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/11/131119112402.htm
University of Texas, Dallas. "Computer scientists create new 3-D technique." ScienceDaily. www.sciencedaily.com/releases/2013/11/131119112402.htm (accessed September 22, 2014).

Share This



More Computers & Math News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
Oculus Reveals New Virtual Reality Headset Prototype

Oculus Reveals New Virtual Reality Headset Prototype

Newsy (Sep. 20, 2014) Oculus announced a new virtual reality headset prototype Saturday, saying the product is close to being ready for consumers. Video provided by Newsy
Powered by NewsLook.com
How To Protect Your Data In The Still-Vulnerable iOS 8

How To Protect Your Data In The Still-Vulnerable iOS 8

Newsy (Sep. 20, 2014) One security researcher says despite Apple's efforts to increase security in iOS 8, it's still vulnerable to law enforcement data-transfer techniques. Video provided by Newsy
Powered by NewsLook.com
How Much Privacy Protection Will Google's Android L Provide?

How Much Privacy Protection Will Google's Android L Provide?

Newsy (Sep. 19, 2014) Google's local encryption will make it harder for law enforcement or malicious actors to access the contents of devices running Android L. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins