Featured Research

from universities, journals, and other organizations

Optical fiber networks: Channeling light to greater heights

Date:
November 20, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Private households are increasingly connecting to the Internet via optical fiber networks, whose bandwidth is suitable for delivering on-demand. The fibers of the network transmit light simultaneously over many channels by using different optical wavelengths. These networks could be expanded by also utilizing light's polarization, which is the plane in which light waves oscillate.

Private households are increasingly connecting to the Internet via optical fiber networks, whose bandwidth is suitable for delivering on-demand video. The fibers of the network transmit light simultaneously over many channels by using different optical wavelengths. These networks could be expanded by also utilizing light's polarization, which is the plane in which light waves oscillate. A research team at the A*STAR Institute of Microelectronics in Singapore has now developed an optical signal-processing device that is able to filter light with different polarization and fits on a silicon chip.

An optical fiber requires hardware at its end to filter and process the information carried by the light that it is transmitting. Light sent at different wavelengths can be separated with a common spectrometer such as a grating; however, light sent at different polarizations typically can only be separated with crystals that favor one polarization over the other.

Since the required materials do not fit easily onto a computer chip, implementing such schemes has remained difficult, notes Ying Huang from the research team. "Polarization-sensitive performance remains one of the major technology bottlenecks limiting silicon photonics technology today," Huang says. "Existing devices are incompatible with polarization-insensitive optical fiber networks, which are the most dominant application for silicon photonics technology."

The scheme developed by Huang and co-workers is easy to implement. Rather than relying on specific material properties, their generic device uses basic geometric principles -- a constriction channel -- to control light of different polarizations. The channel is made from silicon and its side walls are insulated with silicon dioxide (see image). Light with a vertically aligned polarization travels along the sides of the device, whereas light with a horizontally aligned polarization travels predominantly along the top surface. The constriction blocks the horizontally polarized light because its width is too narrow to confine the light to the top surface.

In test devices operating at wavelengths typical for optical fiber data transmission and constrictions only 71 nanometers wide, Huang and team demonstrated that 30 times more vertically polarized light passed through each device than its horizontally polarized counterpart. Moreover, the devices operated over a broad range of wavelengths, which will allow microelectronic engineers to combine polarization selection with transmission schemes using different wavelengths.

Huang and team are now working to improve the design and make it easy to implement for on-chip photonics. "The ultimate goal is to provide an attractive 'grab-and-use' type of solution for the silicon photonics community to address the polarization-sensitive performance bottleneck," says Huang.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Optical fiber networks: Channeling light to greater heights." ScienceDaily. ScienceDaily, 20 November 2013. <www.sciencedaily.com/releases/2013/11/131120103448.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, November 20). Optical fiber networks: Channeling light to greater heights. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/11/131120103448.htm
The Agency for Science, Technology and Research (A*STAR). "Optical fiber networks: Channeling light to greater heights." ScienceDaily. www.sciencedaily.com/releases/2013/11/131120103448.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins