Featured Research

from universities, journals, and other organizations

Infrared vision lets researchers see through -- and into -- multiple layers of graphene

Date:
November 21, 2013
Source:
University at Buffalo
Summary:
Scientists have developed a technique for "seeing through" a stack of graphene sheets to identify and describe the electronic properties of each individual sheet -- even when the sheets are covering each other up.

The direction that a light wave is oscillating changes as the wave is reflected by a sheet of graphene. Researchers exploited this changing quality to identify the electronic properties of multiple sheets of graphene stacked atop one another even when they were covering each other up.
Credit: Chul Soo Kim, U.S. Naval Research Laboratory

It's not X-ray vision, but you could call it infrared vision.

A University at Buffalo-led research team has developed a technique for "seeing through" a stack of graphene sheets to identify and describe the electronic properties of each individual sheet -- even when the sheets are covering each other up.

The method involves shooting a beam of infrared light at the stack, and measuring how the light wave's direction of oscillation changes as it bounces off the layers within.

To explain further: When a magnetic field is applied and increased, different types of graphene alter the direction of oscillation, or polarization, in different ways. A graphene layer stacked neatly on top of another will have a different effect on polarization than a graphene layer that is messily stacked.

"By measuring the polarization of reflected light from graphene in a magnetic field and using new analysis techniques, we have developed an ultrasensitive fingerprinting tool that is capable of identifying and characterizing different graphene multilayers," said John Cerne, PhD, UB associate professor of physics, who led the project.

The technique allows the researchers to examine dozens of individual layers within a stack.

Graphene, a nanomaterial that consists of a single layer of carbon atoms, has generated huge interest due to its remarkable fundamental properties and technological applications. It's lightweight but also one of the world's strongest materials. So incredible are its characteristics that it garnered a Nobel Prize in Physics in 2010 for two scientists who pioneered its study.

Cerne's new research looks at graphene's electronic properties, which change as sheets of the material are stacked on top of one another. The findings appeared Nov. 5 in Scientific Reports, an online, open-access journal produced by the publishers of Nature.

Cerne's collaborators included colleagues from UB and the U.S. Naval Research Laboratory.

So, why don't all graphene layers affect the polarization of light the same way?

Cerne says the answer lies in the fact that different layers absorb and emit light in different ways.

The study showed that absorption and emission patterns change when a magnetic field is applied, which means that scientists can turn the polarization of light on and off either by applying a magnetic field to graphene layers or, more quickly, by applying a voltage that sends electrons flowing through the graphene.

"Applying a voltage would allow for fast modulation, which opens up the possibility for new optical devices using graphene for communications, imaging and signal processing," said first author Chase T. Ellis, a former graduate research assistant at UB and current postdoctoral fellow at the Naval Research Laboratory.


Story Source:

The above story is based on materials provided by University at Buffalo. The original article was written by Charlotte Hsu. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chase T. Ellis, Andreas V. Stier, Myoung-Hwan Kim, Joseph G. Tischler, Evan R. Glaser, Rachael L. Myers-Ward, Joseph L. Tedesco, Charles R. Eddy, D. Kurt Gaskill, John Cerne. Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect. Scientific Reports, 2013; 3 DOI: 10.1038/srep03143

Cite This Page:

University at Buffalo. "Infrared vision lets researchers see through -- and into -- multiple layers of graphene." ScienceDaily. ScienceDaily, 21 November 2013. <www.sciencedaily.com/releases/2013/11/131121130214.htm>.
University at Buffalo. (2013, November 21). Infrared vision lets researchers see through -- and into -- multiple layers of graphene. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2013/11/131121130214.htm
University at Buffalo. "Infrared vision lets researchers see through -- and into -- multiple layers of graphene." ScienceDaily. www.sciencedaily.com/releases/2013/11/131121130214.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins