Featured Research

from universities, journals, and other organizations

Pushing limits of light microscopy

Date:
November 28, 2013
Source:
Research Institute of Molecular Pathology
Summary:
A team of researchers has established a new microscopy technique which greatly enhances resolution in the third dimension. In a simple set-up, the scientists used the translation of position information of fluorescent markers into color information. Overcoming the need for scanning the depth of a sample, they were able to generate the precise 3D information at the same speed as it would take to acquire a 2D image.

Plot displaying the uniqueness of a fluorophore’s spectral light modification up to ~100nm above a nanostructure coated microscope slide.
Credit: Research Institute of Molecular Pathology

A team of researchers from the IMP Vienna together with collaborators from the Vienna University of Technology established a new microscopy technique which greatly enhances resolution in the third dimension. In a simple set-up, the scientists used the translation of position information of fluorescent markers into color information. Overcoming the need for scanning the depth of a sample, they were able to generate the precise 3D information at the same speed as it would take to acquire a 2D image. The general principle of this innovative approach can be used for broader applications and is published online in the PNAS Early Edition this week.

For many disciplines in the natural sciences it is desirable to get highly enlarged, precise pictures of specimens such as cells. Depending on the purpose of an experiment and the preparation of the sample, different microscopy-techniques are used to analyze small structures or objects. However, a drawback of most current approaches is the need to scan the depth of a sample in order to get a 3D picture. Especially for optically sensitive or highly dynamic (fast moving) samples this often represents a serious problem. Katrin Heinze and Kareem Elsayad, lead authors of the PNAS publication, managed to circumvent this difficulty during their work at the IMP.

Precise images of sensitive and dynamic samples

Elsayad, who was part of a research team led by Katrin Heinze at the IMP, used fluorescence microscopy for his experimental set-up. The principle of fluorescence microscopy -- now a common tool in biomedical research labs -- is as follows: Fluorescent dyes, so-called fluorophores, are turned on by light of a certain wavelength and, as a consequence, "spontaneously" emit light of a different wavelength. Elsayad designed a thin biocompatible nanostructure consisting of a quartz microscope slide with a thin silver film and a dielectric layer. The IMP-scientist then labeled the sample -- fixed or live cells -- with a fluorescent dye and placed it above the coated slide.

Elsayad explains in simple terms how the biological imaging then took place: "The measured emission spectrum of a fluorescent dye above this substrate depends on its distance from the substrate. In other words, the position information of a collection of fluorophores is translated into color information, and this is what we were measuring in the end." With this elaborate method, only one measurement is needed to determine the fluorophore distribution above the substrate, with a resolution -- in the direction away from the substrate -- down to 10 nanometers (1/100.000th of a millimeter). "I believe that the beauty of our method is its simplicity. No elaborate set-up or machines are required to achieve this high resolution. Once the sample is placed on the substrate, which can be mass produced, a confocal microscope with spectral detection is all that is needed," Heinze points out.

Simple method, big potential

The novel technique was already successfully tested by Elsayad and Heinze. Together with collaborators at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences, they used it to study paxillin, a protein important for cell adhesion, in living cells. The scientists also visualized the 3D dynamics of filopodia, small cell protrusions made of bundled actin-filaments that move very quickly and have a high turnover-rate during cell migration.

Originally developed for a single fluorescent marker, the new method can be adapted for others as well."There are numerous possibilities for further development and additional applications of the technique," Elsayad points out. "From optical readout on chips to make faster computers, to more efficient DNA sequencing methods." The novel technique patented by the IMP has already attracted a lot of interest from several big optical companies.


Story Source:

The above story is based on materials provided by Research Institute of Molecular Pathology. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Elsayad, A. Urich, P. S. Tan, M. Nemethova, J. Victor Small, K. Unterrainer, K. G. Heinze. Spectrally coded optical nanosectioning (SpecON) with biocompatible metal-dielectric-coated substrates. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1307222110

Cite This Page:

Research Institute of Molecular Pathology. "Pushing limits of light microscopy." ScienceDaily. ScienceDaily, 28 November 2013. <www.sciencedaily.com/releases/2013/11/131128133915.htm>.
Research Institute of Molecular Pathology. (2013, November 28). Pushing limits of light microscopy. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/11/131128133915.htm
Research Institute of Molecular Pathology. "Pushing limits of light microscopy." ScienceDaily. www.sciencedaily.com/releases/2013/11/131128133915.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins