Featured Research

from universities, journals, and other organizations

Diagnostic imaging: New chip provides better all-round performance

Date:
December 4, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A new microelectromechanical system provides the 360-degree view that is critical in diagnostic imaging.

A polygon-shaped pyramidal reflector on a silicon microelectromechanical system (MEMS) chip that allows full circumferential diagnostic imaging.
Credit: 2013 A*STAR Institute of Microelectronics

Small optical devices are important for diagnostic imaging in the body; they serve, for example, as optical probes in blood vessels or the gastrointestinal tract. For accurate diagnosis, such applications require a 360-degree view of their environment.

Related Articles


A microelectromechanical silicon chip developed by researchers from the A*STAR Institute of Microelectronics, Singapore, in collaboration with colleagues from the National University of Singapore, offers a feasible solution for in vivo diagnostics. The chip can rotate scanning laser beams by almost a full turn at high speed.

Scientists are widely investigating the microelectromechanical systems (MEMS) used by the researchers in Singapore, with the aim of adding complex functionality to optical or mechanical applications. Typically, these systems are complex structures, such as movable parts or mirrors that are edged into a silicon chip. Their small size makes MEMS devices ideal for circumferential diagnostic imaging systems. The small scanning angles, however, limited earlier attempts to fabricate such devices. The difficulty arose from the inability to fully utilize standard MEMS-based actuators and their linear movements for rotational devices.

The important advance in the device's design is the implementation of a new reflector for the scanning laser, notes Xiaojing Mu from the research team. "We have designed a pyramidal polygon reflector as the key component to realize full circumferential scanning," says Mu. "The reflector is placed on a sophisticated structure that translates the linear movement of the electrostatic actuators into the large rotational motion of the reflector."

In the new design, the pyramidal reflector (see image) is mounted on a small ring. Four electrostatic actuators on the side of the device rotate this ring by about 40 degrees, which, combined with the eight facets of the pyramid, means that an almost full circumferential area is covered by a laser illuminating the pyramid. Because the actuators only use electrical fields to create movement via electrostatic repulsion, almost no electrical current is used. As such, the device consumes very little power and generates no heat, which makes it compatible for medical applications inside the body.

Although the present design represents a strong demonstration of the operating principle, further improvements will be needed, according to Mu. "Unfortunately, so far, the pyramidal polygon cannot be fabricated by the traditional MEMS semiconductor process. Thus, we are seeking alternative production strategies." Nevertheless, with the help of MEMS or even smaller devices on the nanoscale, there is increasing potential for realizing more sophisticated medical diagnostics for use in the human body.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaojing Mu, Guangya Zhou, Hongbin Yu, Julius Ming-Lin Tsai, Wee Keong Neo, A. Senthil Kumar, Fook Siong Chau. Electrostatic Micromachined Resonating Micro-Scanner for Circumferential Endoscopic Bio-Imaging. IEEE Photonics Technology Letters, 2013; 25 (8): 749 DOI: 10.1109/LPT.2013.2249057

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Diagnostic imaging: New chip provides better all-round performance." ScienceDaily. ScienceDaily, 4 December 2013. <www.sciencedaily.com/releases/2013/12/131204090758.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, December 4). Diagnostic imaging: New chip provides better all-round performance. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/12/131204090758.htm
The Agency for Science, Technology and Research (A*STAR). "Diagnostic imaging: New chip provides better all-round performance." ScienceDaily. www.sciencedaily.com/releases/2013/12/131204090758.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins