Featured Research

from universities, journals, and other organizations

Calibration tools to encourage use of novel medical imaging technique

Date:
December 6, 2013
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have developed prototype calibration tools for an experimental medical imaging technique that offer new advantages in diagnosing and monitoring of certain cancers and possibly other medical conditions.

NIST physicist Michael Boss positions a prototype NIST phantom (a calibration tool) in an ultralow-field magnetic resonance imaging scanner at the University of California at Berkeley. NIST phantoms are intended to help assess and validate this experimental imaging method, which offers advantages in diagnosing and monitoring of certain medical conditions.
Credit: NIST

The National Institute of Standards and Technology (NIST) has developed prototype calibration tools for an experimental medical imaging technique that offers new advantages in diagnosing and monitoring of certain cancers and possibly other medical conditions.

Related Articles


NIST designed, constructed and tested two prototype phantoms for calibrating ultralow-field (ULF) magnetic resonance imaging (MRI) systems. Phantoms are widely used tools for quality control in medical imaging. They are generally objects with simple shapes but very well-defined responses to a specific type of imaging scanner. As their name implies, phantoms are stand-ins for the body, and are used to help optimize MRI machines to deliver the best possible medical images for a given type of tissue.

The NIST prototypes are the first standard calibration tools for ULF-MRI, offering a quantitative means to assess performance, validate the technique, and directly compare different experimental and clinical MRI scanners.

"Tissues that may look the same in clinical MRI can look very different in ULF-MRI, which provides new contrast mechanisms," NIST physicist Michael Boss says. "Our hope is that we can move this technique along to attract more interest from [industry] vendors."

MRI noninvasively images soft tissues based on measurements of how hydrogen nuclei -- in the water that makes up much of the body -- respond to magnetic fields. ULF-MRI enhances tissue contrast in particular types of MRI scans. Prostate tumors, for example, can be difficult to see with conventional MRI but show up clearly under ULF-MRI. ULF-MRI has also been used experimentally to image the brain, and tested in at least one nonmedical application, inspection of liquids at airports.

ULF-MRI also offers practical advantages: The instruments are simpler in design, lighter in weight and less expensive than regular MRI scanners. That's because ULF-MRI operates at much lower magnetic field strengths, measured in microteslas, thousands of times lower than conventional MRI, which operates at up to 3 teslas and requires huge magnets. The low magnetic field strength means ULF-MRI needs the most sensitive magnetometers available: SQUIDs (superconducting quantum interference devices). This is convenient because it makes ULF-MRI suitable for combining with other SQUID-based imaging techniques such as magnetoencephalography.

NIST staff previously designed phantoms for conventional MRI systems and also have extensive experience both making and using SQUIDs. NIST's new ULF-MRI phantoms are short plastic cylinders, shaped like hockey pucks but a bit smaller, containing six or 10 plastic jars filled with various salt solutions that become magnetized in a magnetic field. Each phantom measures a different aspect of scanner performance such as spatial resolution. NIST researchers tested the new phantoms on both a conventional MRI system at the University of Colorado Health Sciences Center (Denver, Colo.) and an experimental ULF-MRI scanner at the University of California (UC) at Berkeley, where the technique was first demonstrated about a decade ago.

Tests results show the prototype phantoms are well-matched to ULF-MRI applications and allow direct comparison of ULF and clinical MRI system performance. NIST researchers now plan to incorporate design improvements based on lessons learned from the prototypes, with the aim of improving phantom stability and providing traceability to standard measurement units. NIST and UC Berkeley researchers also plan to work together to further develop ULF-MRI technology for detection of prostate and breast cancers.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael A. Boss, John A. B. Mates, Sarah E. Busch, Paul SanGiorgio, Stephen E. Russek, Kai Buckenmaier, Kent D. Irwin, Hsiao-Mei Cho, Gene C. Hilton, John Clarke. Prototype phantoms for characterization of ultralow field magnetic resonance imaging. Magnetic Resonance in Medicine, 2013; DOI: 10.1002/mrm.25060

Cite This Page:

National Institute of Standards and Technology (NIST). "Calibration tools to encourage use of novel medical imaging technique." ScienceDaily. ScienceDaily, 6 December 2013. <www.sciencedaily.com/releases/2013/12/131206163055.htm>.
National Institute of Standards and Technology (NIST). (2013, December 6). Calibration tools to encourage use of novel medical imaging technique. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/12/131206163055.htm
National Institute of Standards and Technology (NIST). "Calibration tools to encourage use of novel medical imaging technique." ScienceDaily. www.sciencedaily.com/releases/2013/12/131206163055.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins