Featured Research

from universities, journals, and other organizations

Newly discovered gene interaction could lead to novel cancer therapies

Date:
December 13, 2013
Source:
Virginia Commonwealth University
Summary:
Scientists have revealed how two genes interact to kill a wide range of cancer cells. The genes known as mda-7/IL-24 and SARI could potentially be harnessed to treat both primary and metastatic forms of brain, breast, colon, lung, ovary, prostate, skin and other cancers.

This is Paul Fisher, M.Ph., Ph.D., who originally discovered the genes known as mda-7/IL-24 and SARI.
Credit: VCU Massey Cancer Center

Scientists from Virginia Commonwealth University Massey Cancer Center have revealed how two genes interact to kill a wide range of cancer cells. Originally discovered by the study's lead investigator Paul B. Fisher, M.Ph., Ph.D., the genes known as mda-7/IL-24 and SARI could potentially be harnessed to treat both primary and metastatic forms of brain, breast, colon, lung, ovary, prostate, skin and other cancers.

Related Articles


In the study, recently published in the online version of the journal Cancer Research, Fisher's team found that forced expression of MDA-7/IL-24 (melanoma differentiation associated gene-7/interlukin-24) stimulates SARI (suppressor of AP-1, induced by interferon) expression in what is known as an autocrine/paracrine loop, which ultimately causes cancer cells to undergo a form of cell suicide known as apoptosis. Autocrine/paracrine loops occur when the expression of a particular gene or its encoded protein causes cells to secrete molecules that bind to surface receptors and force the expression of more of the same protein in an ongoing cycle.

"Many previous studies show that MDA-7/IL-24 can selectively kill diverse cancer cells through multiple mechanisms, but what was unclear was how exactly MDA-7/IL-24 interacted with other genes to promote cancer toxicity," says Fisher, Thelma Newmeyer Corman Endowed Chair in Cancer Research and co-leader of the Cancer Molecular Genetics research program at VCU Massey Cancer Center, and chairman of the Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine (VIMM) at VCU School of Medicine. "Our study uncovered multiple signaling pathways used by MDA-7/IL-24 that facilitate cancer cell death through the induction of SARI."

Fisher and his team identified an existing combination of receptors, IL-20R1 and IL-20R2, and a discovered new combination of receptors, IL-22R1 and IL-20R1, through which signaling occurs to induce the MDA-7/IL-24 autocrine/paracrine loop. Once activated by the MDA-7/IL-24 protein, these receptors cause both normal and cancer cells to produce and secrete the MDA-7/IL-24 protein, which, in turn, activates SARI. The process was shown to culminate in apoptosis in cancer cells. Normal, healthy cells were not affected in the experiments.

The researchers are now focusing on developing small molecule drugs that induce MDA-7/IL-24 and/or SARI in cancer cells. They have also been experimenting with cancer-selective replicating viruses that seek out cancer cells and infect them with the toxic genes -- an approach that has already been successfully employed in a phase 1 clinical trial using engineered viruses that deliver MDA-7/IL-24.

"This study helped us better understand how MDA-7/IL-24 works to kill a broad range of cancer cells through the induction of SARI," says Fisher. "In addition to giving us another target for the development of new therapies, our research also suggests that we may be able to monitor the expression of SARI in order to determine the effectiveness of future therapies under development that target MDA-7/IL-24."


Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Dash, P. Bhoopathi, S. K. Das, S. Sarkar, L. Emdad, S. Dasgupta, D. Sarkar, P. B. Fisher. Novel mechanism of MDA-7/IL-24 cancer-specific apoptosis through SARI induction. Cancer Research, 2013; DOI: 10.1158/0008-5472.CAN-13-1062

Cite This Page:

Virginia Commonwealth University. "Newly discovered gene interaction could lead to novel cancer therapies." ScienceDaily. ScienceDaily, 13 December 2013. <www.sciencedaily.com/releases/2013/12/131213094953.htm>.
Virginia Commonwealth University. (2013, December 13). Newly discovered gene interaction could lead to novel cancer therapies. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/12/131213094953.htm
Virginia Commonwealth University. "Newly discovered gene interaction could lead to novel cancer therapies." ScienceDaily. www.sciencedaily.com/releases/2013/12/131213094953.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins