Featured Research

from universities, journals, and other organizations

Blocking tumor-associated macrophages decreases glioblastoma's growth, extends survival in mice

Date:
December 15, 2013
Source:
American Society for Cell Biology
Summary:
Experimental drug that targets macrophages, a type of immune cells, in microenvironment surrounding lethal brain tumor glioblastoma multiforme decreased cancer's growth and extended survival of lab mice with cancer. Results are encouraging for planned clinical trials of drug in combination with radiation therapy in glioma patients.

An experimental drug that targets macrophages, a type of immune cells, in the microenvironment surrounding the lethal brain tumor glioblastoma multiforme decreased the cancer's growth and extended survival of laboratory mice with the cancer, scientists will report on Tuesday Dec. 17, at the American Society for Cell Biology (ASCB) annual meeting in New Orleans.

Related Articles


The rates of apoptosis, or programmed cell death, were higher in the mice treated with the experimental agent than in the untreated animals that also had high-grade glioblastomas, said Johanna Joyce, Ph.D., of the Memorial Sloan-Kettering Cancer Center (MSKCC) in New York City. As a result, the drug-treated laboratory mice survived many months longer than the untreated animals with the same cancer.

The experimental drug blocks cell receptors for colony-stimulating factor-1 (CSF-1R), which is essential to the differentiation and survival of tumor-associated macrophages and microglia (TAMS), which are the brain's front-line immune defense cells. The microenvironment that surrounds brain tumors contains many macrophages with this receptor.

Glioblastoma multiforme (GBM) is the most common and the most deadly adult primary brain tumor, with an average survival of just 14 months following diagnosis. Even with aggressive treatment by surgery, radiation and chemotherapy, most therapeutic approaches targeting the glioma cells in GBM fail.

Faced with this bleak picture, Dr. Joyce and colleagues MSKCC looked for an alternative strategy and turned to the cancer's cellular neighbors, the non-tumor cells that are part of the glioma microenvironment. In particular, they zeroed in on tumor-associated macrophages and TAMs.

When Dr. Joyce's lab used an inhibitor of the CSF-1 receptor (CSF-1R) to target TAMs in a mouse model of GBM, the treated mice survived many months longer than the control cohort. Their established, high-grade gliomas regressed in proliferation and malignancy, even though the glioma cells themselves were not the targets of the CSF-1R treatment.

With the TAMs blockaded by CSF-1 inhibitors, it was the tumor cells that showed increased rates of apoptosis. The TAMs were not even depleted in the treated mice, despite the drug blockade of their growth factor. Instead the TAMs survived by responding to growth factors secreted by the gliomas, including GM-CSF and IFN-γ, according to Dr. Joyce.

The MSKCC researchers also found that tumor spheres, freshly isolated from glioma patients in the surgery department at MSKCC, responded to the drug when implanted in animals. The CSF-1R blockade slowed intracranial growth in the patient-derived glioma xenografts.

Because GBM is the most common glioma, its genome was the first to be sequenced for the Cancer Genome Atlas, which parsed GBM into four genetic subtypes: proneural, neural, classical and mesenchymal. The mice used in Dr. Joyce's lab experiments model the proneural GBM subtype. All forms of GBM have a 2- to 3-person per 100,000 incidence rate in the U.S. and Europe, according to the National Brain Tumor Society. Because of its highly invasive phenotype, GBM is almost impossible to resect completely in surgery. Drug and radiation treatments are the standard follow-ups.

Dr. Joyce says that these new results, which were first reported only two months ago in Nature Medicine, are encouraging for planned clinical trials of CSF-1R inhibitors in combination with radiation therapy in glioma patients.

"We are optimistic that CSF-1R inhibitors may provide a more effective therapy than current treatments for the disease management of glioma patients," Dr. Joyce said.


Story Source:

The above story is based on materials provided by American Society for Cell Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephanie M Pyonteck, Leila Akkari, Alberto J Schuhmacher, Robert L Bowman, Lisa Sevenich, Daniela F Quail, Oakley C Olson, Marsha L Quick, Jason T Huse, Virginia Teijeiro, Manu Setty, Christina S Leslie, Yoko Oei, Alicia Pedraza, Jianan Zhang, Cameron W Brennan, James C Sutton, Eric C Holland, Dylan Daniel, Johanna A Joyce. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 2013; 19 (10): 1264 DOI: 10.1038/nm.3337

Cite This Page:

American Society for Cell Biology. "Blocking tumor-associated macrophages decreases glioblastoma's growth, extends survival in mice." ScienceDaily. ScienceDaily, 15 December 2013. <www.sciencedaily.com/releases/2013/12/131215160900.htm>.
American Society for Cell Biology. (2013, December 15). Blocking tumor-associated macrophages decreases glioblastoma's growth, extends survival in mice. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2013/12/131215160900.htm
American Society for Cell Biology. "Blocking tumor-associated macrophages decreases glioblastoma's growth, extends survival in mice." ScienceDaily. www.sciencedaily.com/releases/2013/12/131215160900.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins