Featured Research

from universities, journals, and other organizations

Synthetic natural gas from excess electricity

Date:
January 6, 2014
Source:
Empa
Summary:
"Power to gas" is a key concept when it comes to storing alternative energy. This process converts short-term excess electricity from photovoltaic systems and wind turbines into hydrogen. Combined with the greenhouse gas CO2, renewable hydrogen can be used to produce methane, which can be stored and distributed in the natural gas network. Researchers have now succeeded in further optimizing this process.

Zeolites bind the water produced during methanation of hydrogen, thereby increasing the methane yield from the new process.
Credit: Image courtesy of Empa

"Power to gas" is a key concept when it comes to storing alternative energy. This process converts short-term excess electricity from photovoltaic systems and wind turbines into hydrogen. Combined with the greenhouse gas CO2, renewable hydrogen can be used to produce methane, which can be stored and distributed in the natural gas network. Empa researchers have now succeeded in further optimising this process.

The methanation process uses CO2, for example from biogas production, and this combined with hydrogen (H2) from excess renewable electricity, produces methane, which can not only be distributed simply and cost-effectively in the natural gas network, but can also be stored for longer periods of time. This means renewable energy is being used to produce a "quasi-fossil" fuel -- the basic principle of "power to gas."

The Sabatier reaction, which produces combustible methane from hydrogen and CO2, has been known for a long time. Now researchers in the Empa "Hydrogen and Energy" Department have succeeded in greatly optimising the process. A catalyst is required to bring about the reaction of CO2 with hydrogen using as little energy as possible; this catalyst can, for example, be made of nickel. The gas molecules react more easily with each other on the surface of such a catalyst, reducing the energy required for the reaction to take place. This is referred to as sorption catalysis. Empa researcher, Andreas Borgschulte, and his team have now combined a nanoscale nickel catalyst with a zeolite. Zeolites are crystalline aluminosilicates with the ability to absorb water molecules and release them again when heated.

The principle is simple: the chemical reaction of hydrogen with CO2 produces not only methane (CH4), but also water (H2O). The researchers use the hygroscopic (i.e. water-binding) property of the zeolite to remove the resulting water from the reaction mixture. The chemical equilibrium then moves towards methane. Result: a higher yield of pure methane and a more efficient catalytic process. As soon as the zeolite is saturated with water, it can be "unloaded" again by heating and evaporation of the water, and is then re-used.

The process works -- though currently only in the laboratory. According to Borgschulte, there is still a long way to go before it is ready for commercial exploitation in large plants. Empa researchers are currently looking for project partners in order to build a methanation plant on a larger scale and use it as a pilot project. At the same time, Borgschulte's team would like to optimise the process even further. The next stage is to use four or more sorption catalysts at the same time. When one is saturated with water, the system automatically jumps to the next "dry" catalyst while the previous one is being "unloaded" again.

One problem with this cyclical method up to now has been sulphur, which is produced in biogas plants together with methane and CO2. Sulphur compounds can cause irreparable damage to the zeolite. The researchers are now working on removing the sulphur from crude biogas so that the zeolite continues to work for as long as possible.

In future, Borgschulte also thinks it is conceivable that new catalyst materials that are more efficient than nickel may be used in combination with the zeolite. These could improve the Sabatier process even further. This would mean that excess renewable electricity was no longer wasted but used as the basis for producing sustainable natural gas.


Story Source:

The above story is based on materials provided by Empa. Note: Materials may be edited for content and length.


Cite This Page:

Empa. "Synthetic natural gas from excess electricity." ScienceDaily. ScienceDaily, 6 January 2014. <www.sciencedaily.com/releases/2014/01/140106094557.htm>.
Empa. (2014, January 6). Synthetic natural gas from excess electricity. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2014/01/140106094557.htm
Empa. "Synthetic natural gas from excess electricity." ScienceDaily. www.sciencedaily.com/releases/2014/01/140106094557.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins