Featured Research

from universities, journals, and other organizations

Soft hydrogels turned into ionic conductors with diverse applications, from artificial muscles to transparent speakers

Date:
January 22, 2014
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
An innovative design turns soft hydrogels into ionic conductors with diverse applications, from artificial muscles to transparent audio speakers.

An innovative design turns soft hydrogels into ionic conductors with diverse applications, from artificial muscles to transparent audio speakers.

Related Articles


Researchers are determined to manufacture stretchable biomedical devices that interface directly with organs such as the skin, heart and brain. Electronic devices, however, are usually made from hard materials that are incompatible with soft tissue. Choon Chiang Foo from the A*STAR Institute of High Performance Computing, Singapore, and researchers at Harvard University, United States, are aiming to solve this dilemma with squishy, see-through gels that can act as integral components of stretchable devices thanks to an innovative ionic conduction mechanism.

Foo and co-workers made their discovery while investigating a promising 'artificial muscle' technology known as dielectric elastomers. These devices sandwich an insulating rubber polymer between two conductive electrodes, typically made from micro-cracked metals or carbon grease. Applying a voltage to the electrodes builds up pressure which causes the inner polymer to expand. Most electrode materials, however, begin to lose conductivity when subjected to high strains.

The researchers chose to replace the electrodes in dielectric elastomers with soft hydrogels. Hydrogels are transparent and biocompatible materials, typically used in contact lenses, which encapsulate salty ions and water inside a polymeric sheath. Replacing the electrodes requires overcoming two well-known limitations of ionic conductors: their slow speeds relative to electron conductors and a tendency to undergo destructive electrochemical reactions at high voltages.

The team's setup addresses these problems by placing a thin insulating rubber sheet between two hydrogel layers. Electric signals sent to the hydrogel through tiny electrodes leads to rapid buildup of oppositely charged ions on each side of the rubber sheet causing the sandwiched device to thin and expand over the entire area. Furthermore, the rubber layer has a remarkably low capacitance, which causes a large voltage drop across the rubber and shields the hydrogel from electrochemical reactions, even at kilovolt ranges.

To demonstrate the high-frequency operation of their stretchable ionic material, the researchers produced the world's first gel-based transparent loudspeaker (see image). This device, which could be placed over a smartphone or flat-screen television screen, resonated thousands of times per second over the entire audible range.

Foo, whose theoretical contributions proved critical to understanding the novel behavior of these stretchy gels, believes this work may lead to a fundamental shift in how engineers conceive electronic devices. "Because existing conductors struggle to meet the demands of stretchable applications, device designers may begin to ask if they can replace electronic conductors with ionic conductors," he explains.

"The device may lose some performance but may gain other attributes, such as stretchiness, transparency and biocompatibility."

The A*STAR-affiliated researcher contributing to this research is from the Institute of High Performance Computing.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, Z. Suo. Stretchable, Transparent, Ionic Conductors. Science, 2013; 341 (6149): 984 DOI: 10.1126/science.1240228

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Soft hydrogels turned into ionic conductors with diverse applications, from artificial muscles to transparent speakers." ScienceDaily. ScienceDaily, 22 January 2014. <www.sciencedaily.com/releases/2014/01/140122092447.htm>.
The Agency for Science, Technology and Research (A*STAR). (2014, January 22). Soft hydrogels turned into ionic conductors with diverse applications, from artificial muscles to transparent speakers. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2014/01/140122092447.htm
The Agency for Science, Technology and Research (A*STAR). "Soft hydrogels turned into ionic conductors with diverse applications, from artificial muscles to transparent speakers." ScienceDaily. www.sciencedaily.com/releases/2014/01/140122092447.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gas Production Cut on Earthquake Fears

Gas Production Cut on Earthquake Fears

Reuters - Business Video Online (Mar. 5, 2015) The Dutch government has cut production at Europe&apos;s largest gas field in Groningen amid concerns over earthquakes which are damaging local churches. As Amy Pollock reports the decision - largely politically-motivated - could have big economic conseqeunces. Video provided by Reuters
Powered by NewsLook.com
Star Wars-Inspired Prototype Creates Holographic Display

Star Wars-Inspired Prototype Creates Holographic Display

Reuters - Innovations Video Online (Mar. 5, 2015) A prototype holographic display named Leia - after the Star Wars princess who appeared in holographic form asking Obi-Wan Kenobu for help - is demonstrated at the Mobile World Congress in Barcelona. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
IKEA and Samsung Launch Embedded Wireless Charging Range

IKEA and Samsung Launch Embedded Wireless Charging Range

Reuters - Innovations Video Online (Mar. 5, 2015) Samsung and IKEA hope their new embedded wireless charging products, launched at Barcelona&apos;s Mobile World Congress, will tempt consumers eager for plugless power. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Samsung Unveils $30,000 'Dream Doghouse'

Samsung Unveils $30,000 'Dream Doghouse'

Buzz60 (Mar. 5, 2015) On display at the Crufts dog show in England, the &apos;dog kennel of the future&apos; comes with features like a doggie treadmill and Samsung tablet. Mike Janela (@mikejanela) has more. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins