Featured Research

from universities, journals, and other organizations

A new wrinkle in the control of waves: Flexible materials could provide new ways to control sound and light

Date:
January 23, 2014
Source:
Massachusetts Institute of Technology
Summary:
Flexible, layered materials textured with nanoscale wrinkles could provide a new way of controlling the wavelengths and distribution of waves, whether of sound or light. The new method could eventually find applications from nondestructive testing of materials to sound suppression, and could also provide new insights into soft biological systems and possibly lead to new diagnostic tools.

Flexible, layered materials textured with nanoscale wrinkles could provide a new way of controlling the wavelengths and distribution of waves, whether of sound or light. The new method, developed by researchers at MIT, could eventually find applications from nondestructive testing of materials to sound suppression, and could also provide new insights into soft biological systems and possibly lead to new diagnostic tools.

The findings are described in a paper published this week in the journal Physical Review Letters, written by MIT postdoc Stephan Rudykh and Mary Boyce, a former professor of mechanical engineering at MIT who is now dean of the Fu Foundation School of Engineering and Applied Science at Columbia University.

While materials' properties are known to affect the propagation of light and sound, in most cases these properties are fixed when the material is made or grown, and are difficult to alter later. But in these layered materials, changing the properties -- for example, to "tune" a material to filter out specific colors of light -- can be as simple as stretching the flexible material.

"These effects are highly tunable, reversible, and controllable," Rudykh says. "For example, we could change the color of the material, or potentially make it optically or acoustically invisible."

The materials can be made through a layer-by-layer deposition process, refined by researchers at MIT and elsewhere, that can be controlled with high precision. The process allows the thickness of each layer to be determined to within a fraction of a wavelength of light. The material is then compressed, creating within it a series of precise wrinkles whose spacing can cause scattering of selected frequencies of waves (of either sound or light).

Surprisingly, Rudykh says, these effects work even in materials where the alternating layers have almost identical densities. "We can use polymers with very similar densities and still get the effect," he says. "How waves propagate through a material, or not, depends on the microstructure, and we can control it," he says.

By designing that microstructure to produce a desired set of effects, then altering those properties by deforming the material, "we can actually control these effects through external stimuli," Rudykh says. "You can design a material that will wrinkle to a different wavelength and amplitude. If you know you want to control a particular range of frequencies, you can design it that way."

The research, which is based on computer modeling, could also provide insights into the properties of natural biological materials, Rudykh says. "Understanding how the waves propagate through biological tissues could be useful for diagnostic techniques," he says.

For example, current diagnostic techniques for certain cancers involve painful and invasive procedures. In principle, ultrasound could provide the same information noninvasively, but today's ultrasound systems lack sufficient resolution. The new work with wrinkled materials could lead to more precise control of these ultrasound waves, and thus to systems with better resolution, Rudykh says.

The system could also be used for sound cloaking -- an advanced form of noise cancellation in which outside sounds could be completely blocked from a certain volume of space rather than just a single spot, as in current noise-canceling headphones.

"The microstructure we start with is very simple," Rudykh says, and is based on well-established, layer-by-layer manufacturing. "From this layered material, we can extend to more complicated microstructures, and get effects you could never get" from conventional materials. Ultimately, such systems could be used to control a variety of effects in the propagation of light, sound, and even heat.

The technology is being patented, and the researchers are already in discussions with companies about possible commercialization, Rudykh says.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by David Chandler. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "A new wrinkle in the control of waves: Flexible materials could provide new ways to control sound and light." ScienceDaily. ScienceDaily, 23 January 2014. <www.sciencedaily.com/releases/2014/01/140123125926.htm>.
Massachusetts Institute of Technology. (2014, January 23). A new wrinkle in the control of waves: Flexible materials could provide new ways to control sound and light. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/01/140123125926.htm
Massachusetts Institute of Technology. "A new wrinkle in the control of waves: Flexible materials could provide new ways to control sound and light." ScienceDaily. www.sciencedaily.com/releases/2014/01/140123125926.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins