Featured Research

from universities, journals, and other organizations

New computer model may aid personalized cancer care

Date:
January 24, 2014
Source:
Dana-Farber Cancer Institute
Summary:
Scientists have developed a mathematical model to predict how a patient’s tumor is likely to behave and which of several possible treatments is most likely to be effective.

Dana-Farber Cancer Institute scientists have developed a mathematical model to predict how a patient’s tumor is likely to behave and which of several possible treatments is most likely to be effective.

Reporting in the journal Cell Reports, researchers combined several types of data from pre- and post-treatment biopsies of breast tumors to obtain a molecular picture of how the cancer evolved as a result of chemotherapy.

“Better understanding of tumor evolution is key to improving the design of cancer therapies and for truly individualized cancer treatment,” said Kornelia Polyak, MD, PhD, a breast cancer researcher. The model was developed by Polyak and Franziska Michor, PhD, a computational biologist at Dana-Farber.

The study analyzed breast cancer samples from 47 patients who underwent pre-operative chemotherapy to shrink the tumor so it could be removed more easily. The biopsy samples, representing the major types of breast cancer, included specimens taken at diagnosis and again after the chemotherapy was completed.

As has been increasingly recognized, a tumor contains a varied mix of cancer cells and the mix is constantly changing. This is known as tumor heterogeneity. The cells may have different sets of genes turned on and off – phenotypic heterogeneity – or have different numbers of genes and chromosomes – genetic heterogeneity. These characteristics, and the location of different types of cells with the tumor, shape how the cancer evolves and are a factor in the patient’s outcome.

In generating their predictive model, Polyak and Michor integrated data on the genetic and other traits of large numbers of individual cells within the tumor sample along with maps of where the cells were located within the tumors.

“We asked two questions – how heterogeneity influences treatment outcomes and how treatment changes heterogeneity,” said Polyak.

The computer model cranked out some general findings. For one, the genetic diversity within a tumor, such as differences in how many copies of a DNA segment are present – didn’t change much in cancers that had no response or only a partial response to treatment.

Another result: Tumors with less genetic diversity among their cells are more likely to completely respond to treatment than are tumors with more genetic complexity. “In general, high genetic diversity is not a good thing,” commented Polyak. “The results show that higher diversity is making you less likely to respond to treatment.”

While the genetic diversity of tumor cells was not strongly affected by chemotherapy in patients with partial or no response to treatment, the study revealed that certain types of cells – those more likely to grow rapidly – were more likely to be eliminated, and the locations of cell populations changed.

“Based on this knowledge,” said Polyak, “we could predict which tumor cells will likely be eliminated or slowed down by treatment, and how this may change the tumor overall.” She said this information might help design further treatment strategies for patients who didn’t respond well to the initial therapy.

In the future, said the researchers, cancer doctors may use models of this type to analyze a patient’s tumor at the time it’s diagnosed; the results could help tailor specific drugs and plan treatment strategies matched to the tumor’s predicted behavior.


Story Source:

The above story is based on materials provided by Dana-Farber Cancer Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vanessa Almendro, Yu-Kang Cheng, Amanda Randles, Shalev Itzkovitz, Andriy Marusyk, Elisabet Ametller, Xavier Gonzalez-Farre, Montse Muñoz, Hege G. Russnes, Åslaug Helland, Inga H. Rye, Anne-Lise Borresen-Dale, Reo Maruyama, Alexander van Oudenaarden, Mitchell Dowsett, Robin L. Jones, Jorge Reis-Filho, Pere Gascon, Mithat Gönen, Franziska Michor, Kornelia Polyak. Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity. Cell Reports, 2014; DOI: 10.1016/j.celrep.2013.12.041

Cite This Page:

Dana-Farber Cancer Institute. "New computer model may aid personalized cancer care." ScienceDaily. ScienceDaily, 24 January 2014. <www.sciencedaily.com/releases/2014/01/140124082354.htm>.
Dana-Farber Cancer Institute. (2014, January 24). New computer model may aid personalized cancer care. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2014/01/140124082354.htm
Dana-Farber Cancer Institute. "New computer model may aid personalized cancer care." ScienceDaily. www.sciencedaily.com/releases/2014/01/140124082354.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) — In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) — The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) — President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) — A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins