Featured Research

from universities, journals, and other organizations

Microwires as mobile phone sensors

Date:
January 28, 2014
Source:
Basque Research
Summary:
A new study is making progress in furthering understanding of the surface magnetic behavior of glass-coated microwires and has concluded that they are the major candidates for use as high sensitivity sensors, in mobile phones, for example.

Alexander Chizhik.
Credit: Image courtesy of Basque Research

A study by the UPV/EHU's Magnetism Group is making progress in furthering understanding of the surface magnetic behaviour of glass-coated microwires and has concluded that they are the major candidates for use as high sensitivity sensors -- in mobile phones, for example.

Related Articles


The study has been published in the journal Physica B: Condensed Matter.

Microwires were created in the former Soviet Union for military purposes. They formed the basis of the camouflage of a model of spy plane used by the Soviet army, but for a long time the scientific community has been studying them for other purposes. A study by the UPV/EHU's Magnetism Group is making progress in furthering understanding of the surface magnetic behaviour of glass-coated microwires and has concluded that they are the major candidates for use as high sensitivity sensors, in mobile phones, for example.

Microwires have a metal core and a crystal skin, in other words, they have a glass coating. The core of the microwire consists of a ferromagnetic alloy, which varies according to the metals used in the alloy and the final geometry of the wire. "But there is a quality that they all share: they have magnetic properties. It is precisely their magnetic properties and small size that account for the fact that they are so prized," pointed out Alexander Chizhik, a member of the Magnetism group.

"One of the possibly best-known applications with respect to microwires is that they can be used as sensors in the electronic compasses of mobile phones," said Chizhik. "These are sensors that allow the position of the mobile phone owner to be determined in space just as if the device were a GPS." Like the sensors in mobile phones, various sensors developed in collaboration with the Japanese company Aichi are currently being used in the automotive industry or in traffic surveillance vehicles.

Magnetic structure

Right now, the mass production of these sensors is closely related to the ability to reproduce the properties of the wires and the homogeneities of these properties throughout the length of the microwire. So "the main task in our work is to choose the optimum parameters of the magnetic microwires in order to obtain a higher level of reproducibility," explained Chizhik.

That is why the aim of this research is part of the intense work that the Magnetism group has been carrying out over the last 25 years involving studies into the magnetic properties of new materials. In this context, "particular attention has been paid to the quest for new applications for these tiny wires," explained Alexander Chizhik. "Our study makes it possible to go further into the understanding of the surface magnetic behaviour of glass-coated microwires," he added.

Specifically, the UPV/EHU's Magnetism Group has concentrated on studying the magnetic structure of microwires. They are using a laser to do this. The light emitted from this device is reflected onto the microwire and gathers all the information about the microwire's magnetic, electrical, and atomic, etc. structure. "Let's say this microwire functions like a mirror," added the Magnetism Group researcher. That way "we have managed to study the magnetic structure of the microwires in depth and see that they display a unique structure of magnetic domains," as Alexander Chizhik pointed out. "This structure of magnetic domains provides microwaves with great sensitivity. It is a very important factor to take into consideration, because sensors have to have a degree of sensitivity that is higher than the rest in order to pick up low-intensity signals," he added.

He concluded by saying, "Thanks to this study, we have also verified that if we apply an electric current to microwires, the magnetic domain structure varies; so this is an important factor for these sensors to work well."


Story Source:

The above story is based on materials provided by Basque Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander Chizhik, Andrzej Stupakiewicz, Arcady Zhukov, Andrzej Maziewski, Julian Gonzalez. Experimental demonstration of basic mechanisms of magnetization reversal in magnetic microwires. Physica B: Condensed Matter, 2014; 435: 125 DOI: 10.1016/j.physb.2013.09.046

Cite This Page:

Basque Research. "Microwires as mobile phone sensors." ScienceDaily. ScienceDaily, 28 January 2014. <www.sciencedaily.com/releases/2014/01/140128094537.htm>.
Basque Research. (2014, January 28). Microwires as mobile phone sensors. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/01/140128094537.htm
Basque Research. "Microwires as mobile phone sensors." ScienceDaily. www.sciencedaily.com/releases/2014/01/140128094537.htm (accessed October 24, 2014).

Share This



More Computers & Math News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins