Featured Research

from universities, journals, and other organizations

Brain: Loose coupling between calcium channels and sensors

Date:
February 6, 2014
Source:
Institute of Science and Technology Austria
Summary:
Neuroscientists have uncovered the existence of loose coupling between calcium channels and release sensors of exocytosis at a mature central synapse in the rodent brain. The researchers show that loose coupling provides a framework for presynaptic plasticity, a hallmark of synaptic signaling in hippocampal microcircuits.

3-D-volume reconstruction of adult hippocampal mossy fiber and its target structure, a dendritic segment of CA3 pyramidal cell dendrite.
Credit: Image courtesy of Institute of Science and Technology Austria

In research published in this week's online edition of Science, postdoc Nicholas Vyleta and Professor Peter Jonas of the Institute of Science and Technology Austria (IST Austria) uncover the existence of loose coupling between calcium channels and release sensors of exocytosis at a mature central synapse in the rodent brain. The researchers show that loose coupling provides a framework for presynaptic plasticity, a hallmark of synaptic signaling in hippocampal microcircuits.

Information transmission at the synapse between neurons is a highly complex, but at the same time very fast, series of events. When a voltage change, the so-called action potential, reaches the synaptic terminal in the presynaptic neuron, calcium flows through voltage-gated calcium channels into the presynaptic neuron. This influx leads to a rise in the intracellular calcium concentration. Calcium then binds to a calcium sensor in the presynaptic terminal, which in turn triggers the release of vesicles containing neurotransmitters into the synapse. The released neurotransmitter binds to postsynaptic receptors, leading to a response in the postsynaptic neuron.

The coupling between calcium channels and sensors of exocytosis is key in determining the speed, timing and probability of synaptic transmission. Two forms of coupling occur in the brain: in tight, or "nanodomain" coupling, channels and sensors are located very close to each other, with 10 to 20 nm distance, while in loose, or "microdomain" coupling, channel and sensor are further apart, in the region of around 100 nm. Previous research suggests that loose coupling occurs in synapses during early development, while tight coupling is observed in the mature central nervous system. In their current paper, Vyleta and Jonas ask whether, given the advantages of tight coupling -- including the speed, temporal precision, fidelity and energy efficiency of synaptic transmission -- any synapse in the mature central nervous system makes use of loose coupling? And if it does so, what are the consequences for the function of synaptic transmission?

A specific synapse in the hippocampus, the mossy fiber synapse on CA3 pyramidal neurons, which is accessible to direct recording using the patch-clamp method and shows a high degree of plasticity, was the focus in this research. To investigate whether loose or tight coupling occurs in this synapse, Vyleta and Jonas made use of calcium chelators, which capture calcium ions on their way from the source to the sensor, to investigate the timescale and distance of coupling. If only the fast-acting chelator, BAPTA, can inhibit exocytosis and synaptic transmission, but the slow chelator EGTA cannot, tight coupling is at work, while in loose coupling, both fast and slow chelators can inhibit transmission. As both fast and slow chelators suppress transmission in the synapse under investigation, results suggest loose coupling between channels and sensors, with a mean coupling distance of around 75 nm.

Why does loose coupling, which is likely slower and has less fidelity than tight coupling, exist in the mossy fiber-pyramidal neuron synapse? Further results by Vyleta and Jonas show that due to loose coupling, fast endogenous calcium buffers in the synapse can act as a brake on transmission, controlling how likely the initial release of neurotransmitter is. Loose coupling provides the time frame for endogenous buffers to act on synaptic transmission. The saturation of endogenous buffers after repeated stimulation may also promote facilitation, the phenomenon in which impulses are more likely to generate action potentials when they closely follow a prior impulse.

The new findings challenge the view that loose coupling is a developmental phenomenon, demonstrating instead that coupling is regulated in a synapse-specific way. Loose coupling is predominantly used at dynamic and plastic synapses, both in the developing and the mature brain. Together with fast endogenous calcium buffers, loose channel-sensor coupling may provide the molecular framework for presynaptic plasticity, a hallmark of hippocampal neurons.


Story Source:

The above story is based on materials provided by Institute of Science and Technology Austria. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. P. Vyleta, P. Jonas. Loose Coupling Between Ca2 Channels and Release Sensors at a Plastic Hippocampal Synapse. Science, 2014; 343 (6171): 665 DOI: 10.1126/science.1244811

Cite This Page:

Institute of Science and Technology Austria. "Brain: Loose coupling between calcium channels and sensors." ScienceDaily. ScienceDaily, 6 February 2014. <www.sciencedaily.com/releases/2014/02/140206164553.htm>.
Institute of Science and Technology Austria. (2014, February 6). Brain: Loose coupling between calcium channels and sensors. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2014/02/140206164553.htm
Institute of Science and Technology Austria. "Brain: Loose coupling between calcium channels and sensors." ScienceDaily. www.sciencedaily.com/releases/2014/02/140206164553.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins