Featured Research

from universities, journals, and other organizations

Molecular collisions now imaged better than ever

Date:
February 11, 2014
Source:
Radboud University Nijmegen
Summary:
Molecular physicists have produced images of the changes in direction of colliding nitrogen monoxide molecules (NO) with unprecedented sharpness. By combining a Stark decelerator with advanced imaging techniques, they were able to obtain very high resolution images of the collision processes.

Visualisation of the collisions between NO and helium (left) and NO and neon (right). The top images show the research results of Van de Meerakker and his colleagues; the bottom images show the visualised theoretical predictions of the collisions. Red indicates a high probability of change of direction; blue indicates a low probability. The small peaks show the diffraction oscillations.
Credit: Nature Chemistry, courtesy of Radboud University Nijmegen

Molecular physicists from Radboud University Nijmegen have produced images of the changes in direction of colliding nitrogen monoxide molecules (NO) with unprecedented sharpness. By combining a Stark decelerator with advanced imaging techniques, they were able to obtain very high resolution images of the collision processes.

The results were published in Nature Chemistry on 9 February.

The project supervisor, Bas van de Meerakker, was also the first to achieve controlled collisions between two molecules and produced images of collision resonances during his stay as visiting professor in Bordeaux. While carrying out this research, Van de Meerakker and his colleagues detected diffraction oscillations -- fluctuations in the angular distribution of the molecules -- following a collision. These diffraction oscillations provide a unique image of the collision process. 'The changes in direction and, in particular, the oscillation structure that we observed, have long been predicted in theory. Even though we had hoped to be able to visualise this theory in high resolution using our decelerator, the fact that we actually achieved it is really quite something,' said Van de Meerakker.

Ultimate demonstration of wave nature 'Diffraction oscillations are the ultimate demonstration of the wave nature of molecules and the collision process itself', said Van de Meerakker. 'For example, the diffraction of light is a well-known phenomenon that results from interference between light waves. Just like light, atoms and molecules are in fact waves, and can therefore reinforce or cancel out one another as they collide. This results in the oscillation structure that we saw. These data provide us with even more detailed information about the interaction between molecules and, ultimately, help us learn more about nature.'

The publication of their article in Nature Chemistry means that the molecular physicists are yet another step closer to the ultimate molecular collision experiment, in which all variables are controlled. Van de Meerakker's next step will therefore be to use not one but two Stark decelerators to control both beams of colliding molecules.


Story Source:

The above story is based on materials provided by Radboud University Nijmegen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander von Zastrow, Jolijn Onvlee, Sjoerd N. Vogels, Gerrit C. Groenenboom, Ad van der Avoird, Sebastiaan Y. T. van de Meerakker. State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar. Nature Chemistry, 2014; DOI: 10.1038/nchem.1860

Cite This Page:

Radboud University Nijmegen. "Molecular collisions now imaged better than ever." ScienceDaily. ScienceDaily, 11 February 2014. <www.sciencedaily.com/releases/2014/02/140211103135.htm>.
Radboud University Nijmegen. (2014, February 11). Molecular collisions now imaged better than ever. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/02/140211103135.htm
Radboud University Nijmegen. "Molecular collisions now imaged better than ever." ScienceDaily. www.sciencedaily.com/releases/2014/02/140211103135.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins