Featured Research

from universities, journals, and other organizations

Capillaries will measure diffusion, help in more efficient medical treatment

Date:
February 12, 2014
Source:
Institute of Physical Chemistry of the Polish Academy of Sciences
Summary:
How strongly do two dissolved analytes react with each other? Such information is of paramount importance not only in chemistry and molecular biology, but also in medicine or pharmacy, where it is used, such as in the determination of optimal drug doses. A new method will allow for determining diffusion coefficients of analytes in fluids and equilibrium constants of reactions – quickly, at low cost, and most importantly: universally.

A method for fast and low cost determination of diffusion coefficients of various analytes, including drugs, is being developed in the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. Anna Lewandrowska, a doctoral student at the IPC PAS, prepares the analyte for injection into the capillary. Aldona Majcher, also a doctoral student at the IPC PAS, holds a coiled capillary.
Credit: IPC PAS, Grzegorz Krzyżewski

How strongly do two dissolved analytes react with each other? Such information is of paramount importance not only in chemistry and molecular biology, but also in medicine or pharmacy, where it is used, i.a., to determine optimal drug doses. A method developed in the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw will allow for determining diffusion coefficients of analytes in fluids and equilibrium constants of reactions -- quickly, at low cost, and most importantly: universally.

In many medical therapies, a prerequisite for efficient treatment is to maintain appropriate drug concentration in patient's blood. Soon, the selection of optimal doses can be assisted by simple measurement devices that make use of a method for measuring equilibrium constants of analytes in fluids developed in the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw. Only a few millilitres of blood would allow, while you wait, for precise matching of a drug dose with specific patient's body features.

The research on diffusion has been for years carried out at the IPC PAS. The research is based on the phenomena occurring during flow of a liquid, similar to those observed in rivers. In a river bed water flows faster in the bed's central part than at the banks, and when vortices appear in the current, water masses are mixed more effectively. A similar physics helped researchers from the IPC PAS in development of a simple method for determining diffusion coefficients.

The crucial component of the apparatus used in the IPC PAS is a very long (30 m) and very thin polymer tube -- a capillary. Inside the capillary there flows a carrier liquid: water at room temperature and pH value corresponding to that of human blood. The capillary is tightly coiled, and the flowing water moves at high velocity. The combination of the two factors makes the flow in the capillary not fully homogeneous, and results in generation of little vortices.

When a small amount of an analyte is injected into a stream of a carrier liquid flowing in the capillary, it spreads out quickly into a long streak. The researchers from the IPC PAS looked at the analyte concentration in the carrier liquid at the outlet from the capillary. In line with the expectations, the highest concentration was in the center of the capillary, while the lowest one was found at the walls. The plot of the distribution of the analyte concentration along the capillary diameter was bell-shaped, and so it had the shape of the famous Gauss curve.

"In spite of a high flow rate and the presence of vortices, we were able to relate the variations in the distribution of the analyte concentration in the cross-section at the end of the capillary -- i.e., simply speaking, the width of the Gauss bell -- with the flow rate, the viscosity of the carrier liquid, the capillary curvature, and the diffusion coefficient of the analyte. The first three factors are known, which means that in practice it's enough to measure the width of the 'bell' in order to determine the diffusion coefficient," explains Anna Lewandrowska, a doctoral student at the IPC PAS.

"Interestingly, the results of our measurements were inconsistent with current theoretical models, constructed on the basis of approximated solutions of the famous Navier-Stokes equations," comments Prof. Robert Holyst (IPC PAS). "These equations, let us remind, describe the movement of fluids, and at present their solutions are known for the simplest flows only. So, we had to determine experimentally our own formula describing our measurement system and the phenomena occurring therein."

In earlier versions of the apparatus the measurements were carried out at low flow rates, only 0.05 millilitre per minute. The analysis of a single analyte required 40 minutes, yielding for some macromolecules results with errors reaching up to 30%. Now the flow speed is twenty times higher. The time needed to determine the diffusion coefficient was reduced down to three minutes, and the accuracy of measurements increased more than five times.

The shortening of analysis time is important from the medical practitioner's point of view. The determination of a drug dose optimal for a specific patient requires not one, but three measurements. "First, we have to introduce drug molecules into the capillary and to determine the rate of their diffusion. Then we measure the diffusion of protein, with which the drug is to bind, for instance, albumin. In the third measurement we inject both the drug and the protein, with which the drug interacts, into the capillary filled with the same protein. Only the comparison of the results allows to find how efficiently the drug will bind to the protein in patient's blood," explains Aldona Majcher, a doctoral student at the IPC PAS.

The patent-pending method for determining of the diffusion coefficient in fluids is fast, versatile, and simple. It does not require any expensive and complicated measurement equipment, and so it has a chance to get popularized and end up in many hospitals and health centers, as well as chemical and biological laboratories. The experiments in the IPC PAS have shown that the method has proven in measurements with salts, amino acids, peptides, proteins und drugs.


Story Source:

The above story is based on materials provided by Institute of Physical Chemistry of the Polish Academy of Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anna Lewandrowska, Aldona Majcher, Anna Ochab-Marcinek, Marcin Tabaka, Robert Hołyst. Taylor Dispersion Analysis in Coiled Capillaries at High Flow Rates. Analytical Chemistry, 2013; 85 (8): 4051 DOI: 10.1021/ac4007792

Cite This Page:

Institute of Physical Chemistry of the Polish Academy of Sciences. "Capillaries will measure diffusion, help in more efficient medical treatment." ScienceDaily. ScienceDaily, 12 February 2014. <www.sciencedaily.com/releases/2014/02/140212093304.htm>.
Institute of Physical Chemistry of the Polish Academy of Sciences. (2014, February 12). Capillaries will measure diffusion, help in more efficient medical treatment. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2014/02/140212093304.htm
Institute of Physical Chemistry of the Polish Academy of Sciences. "Capillaries will measure diffusion, help in more efficient medical treatment." ScienceDaily. www.sciencedaily.com/releases/2014/02/140212093304.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins