Featured Research

from universities, journals, and other organizations

Physicists reveal novel magnetoelectric effect

Date:
February 12, 2014
Source:
University of Arkansas, Fayetteville
Summary:
New research reveals a novel magnetoelectric effect that may provide a route for using multiferroic materials for the application of RAM in computers and other devices.

New research at the University of Arkansas reveals a novel magnetoelectric effect that makes it possible to control magnetism with an electric field.

Related Articles


The novel mechanism may provide a new route for using multiferroic materials for the application of RAM (random access memories) in computers and other devices, such as printers.

An international research team, led by U of A physicists, reported its findings in an article titled, "Prediction of a Novel Magnetoelectric Switching Mechanism in Multiferroics," on Feb. 5 in the journal Physical Review Letters.

The researchers studied a new predicted state of the multiferroic bismuth ferrite, a compound that can change its electrical polarization when under a magnetic field or magnetic properties when under an electric field. Because of these effects, bismuth ferrite interests researchers who want to design novel devices -- based on magnetoelectric conversion.

The "coupling mechanism" in bismuth ferrite between magnetic order and electrical polarization order is required for this phenomenon to be clearly understood, said Yurong Yang, a research assistant professor of physics in the J. William Fulbright College of Arts and Sciences.

"We discovered an unknown magnetoelectric switching mechanism," Yang said. "In this mechanism, the magnetic order and electrical polarization are not coupled directly, they are coupled with oxygen octahedral tilting, respectively. The switching polarization by electric field leads to the change of the sense of the rotation of oxygen octahedral, which in turn induces the switching of the magnetic order.

"These two couplings are governed by an interaction between three different physical quantities, called 'tri-linear coupling,' he said. "In contrast with the trilinear-coupling effects in the literature, the new coupling involves a large polarization and thus can be easily tuned by an electric field."

Yang performed calculations with the assistance of the Arkansas High Performing Computing Center at the University of Arkansas. He was joined in the study by Laurent Bellaiche, a Distinguished Professor of physics at the U of A. Bellaiche and Yang conducted their research in the university's Institute for Nanoscience and Engineering.

Also collaborating on the paper were Jorge Iniguez of the Materials Science Institute at the Autonomous University of Barcelona in Spain and Ai-Jie Mao of the Institute of Atomic and Molecular Physics at Sichuan University in China.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yurong Yang, Jorge Íñiguez, Ai-Jie Mao, L. Bellaiche. Prediction of a Novel Magnetoelectric Switching Mechanism in Multiferroics. Physical Review Letters, 2014; 112 (5) DOI: 10.1103/PhysRevLett.112.057202

Cite This Page:

University of Arkansas, Fayetteville. "Physicists reveal novel magnetoelectric effect." ScienceDaily. ScienceDaily, 12 February 2014. <www.sciencedaily.com/releases/2014/02/140212112119.htm>.
University of Arkansas, Fayetteville. (2014, February 12). Physicists reveal novel magnetoelectric effect. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/02/140212112119.htm
University of Arkansas, Fayetteville. "Physicists reveal novel magnetoelectric effect." ScienceDaily. www.sciencedaily.com/releases/2014/02/140212112119.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins