Featured Research

from universities, journals, and other organizations

World's most powerful terahertz laser chip

Date:
February 18, 2014
Source:
University of Leeds
Summary:
Researchers have built the world's most powerful terahertz laser chip. The new laser chip has exceeded a 1 Watt output power from a quantum cascade terahertz laser. The new record more than doubles landmarks set last year. Terahertz waves, which lie in the part of the electromagnetic spectrum between infrared and microwaves, can penetrate materials that block visible light and have a wide range of possible uses including chemical analysis, security scanning, medical imaging, and telecommunications. Widely publicised potential applications include monitoring pharmaceutical products, the remote sensing of chemical signatures of explosives in unopened envelopes, and the non-invasive detection of cancers in the human body.

University of Leeds researchers have taken the lead in the race to build the world's most powerful terahertz laser chip. The Leeds team has exceeded a 1 Watt output power from a quantum cascade terahertz laser. The new record more than doubles landmarks set by the Massachusetts Institute of Technology (MIT) and subsequently by a team from Vienna last year.
Credit: Image courtesy of University of Leeds

University of Leeds researchers have taken the lead in the race to build the world's most powerful terahertz laser chip.

Related Articles


A paper in the Institution of Engineering and Technology's (IET) journal Electronics Letters reports that the Leeds team has exceeded a 1 Watt output power from a quantum cascade terahertz laser.

The new record more than doubles landmarks set by the Massachusetts Institute of Technology (MIT) and subsequently by a team from Vienna last year.

Terahertz waves, which lie in the part of the electromagnetic spectrum between infrared and microwaves, can penetrate materials that block visible light and have a wide range of possible uses including chemical analysis, security scanning, medical imaging, and telecommunications.

Widely publicised potential applications include monitoring pharmaceutical products, the remote sensing of chemical signatures of explosives in unopened envelopes, and the non-invasive detection of cancers in the human body.

However, one of the main challenges for scientists and engineers is making the lasers powerful and compact enough to be useful.

Professor Edmund Linfield, Professor of Terahertz Electronics in the University's School of Electronic and Electrical Engineering, said: "Although it is possible to build large instruments that generate powerful beams of terahertz radiation, these instruments are only useful for a limited set of applications. We need terahertz lasers that not only offer high power but are also portable and low cost."

The quantum cascade terahertz lasers being developed by Leeds are only a few square millimetres in size.

In October 2013, Vienna University of Technology announced that its researchers had smashed the world record output power for quantum cascade terahertz lasers previously held by Massachusetts Institute of Technology (MIT). The Austrian team reported an output of 0.47 Watt from a single laser facet, nearly double the output power reported by the MIT team. The Leeds group has now achieved an output of more than 1 Watt from a single laser facet.

Professor Linfield said: "The process of making these lasers is extraordinarily delicate. Layers of different semiconductors such as gallium arsenide are built up one atomic monolayer at a time. We control the thickness and composition of each individual layer very accurately and build up a semiconductor material of between typically 1,000 and 2,000 layers. The record power of our new laser is due to the expertise that we have developed at Leeds in fabricating these layered semiconductors, together with our ability to engineer these materials subsequently into suitable and powerful laser devices."

Professor Giles Davies, Professor of Electronic and Photonic Engineering in the School of Electronic and Electrical Engineering, said: "The University of Leeds has been an international leader in terahertz engineering for many years. This work is a key step toward increasing the power of these lasers while keeping them compact and affordable enough to deliver the range of applications promised by terahertz technology."

This work was mainly funded by the Engineering and Physical Sciences Research Council (EPSRC).


Story Source:

The above story is based on materials provided by University of Leeds. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lianhe Li, A. Valavanis, Jingxuan Zhu, J. Freeman, Li Chen, A.G. Davies, E.H. Linfield, P. Dean. Terahertz quantum cascade lasers with >1 W output powers. Electronics Letters, 2014; 50 (4): 309 DOI: 10.1049/el.2013.4035

Cite This Page:

University of Leeds. "World's most powerful terahertz laser chip." ScienceDaily. ScienceDaily, 18 February 2014. <www.sciencedaily.com/releases/2014/02/140218110754.htm>.
University of Leeds. (2014, February 18). World's most powerful terahertz laser chip. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/02/140218110754.htm
University of Leeds. "World's most powerful terahertz laser chip." ScienceDaily. www.sciencedaily.com/releases/2014/02/140218110754.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Could Cheap Oil Help Fix U.S. Roads?

Could Cheap Oil Help Fix U.S. Roads?

Newsy (Dec. 21, 2014) As falling oil prices boost Americans' spending power, the U.S. government is also gaining flexibility from savings on oil. Video provided by Newsy
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins