Featured Research

from universities, journals, and other organizations

Bats inspire 'micro air vehicle' designs: Small flying vehicles, complete with flapping wings, may now be designed

Date:
February 18, 2014
Source:
American Institute of Physics
Summary:
By exploring how creatures in nature are able to fly by flapping their wings, researchers hope to apply that knowledge toward designing small flying vehicles known as "micro air vehicles" with flapping wings.

This is the time history of coherent vortex formation around the bat wing. Bottom plot shows lift and thrust coefficient variation for a flapping cycle over normalized time.
Credit: D. Tafti/VT

By exploring how creatures in nature are able to fly by flapping their wings, Virginia Tech researchers hope to apply that knowledge toward designing small flying vehicles known as "micro air vehicles" with flapping wings.

More than 1,000 species of bats have hand membrane wings, meaning that their fingers are essentially "webbed" and connected by a flexible membrane. But understanding how bats use their wings to manipulate the air around them is extremely challenging -- primarily because both experimental measurements on live creatures and the related computer analysis are quite complex.

In Virginia Tech's study of fruit bat wings, the researchers used experimental measurements of the movements of the bats' wings in real flight, and then used analysis software to see the direct relationship between wing motion and airflow around the bat wing. They report their findings in the journal Physics of Fluids.

"Bats have different wing shapes and sizes, depending on their evolutionary function. Typically, bats are very agile and can change their flight path very quickly -- showing high maneuverability for midflight prey capture, so it's of interest to know how they do this," explained Danesh Tafti, the William S. Cross professor in the Department of Mechanical Engineering and director of the High Performance Computational Fluid Thermal Science and Engineering Lab at Virginia Tech.

To give you an idea of the size of a fruit bat, it weighs roughly 30 grams and a single fully extended wing is about 17 x 9 cm in length, according to Tafti.

Among the biggest surprises in store for the researchers was how bat wings manipulated the wing motion with correct timing to maximize the forces generated by the wing. "It distorts its wing shape and size continuously during flapping," Tafti noted.

For example, it increases the area of the wing by about 30 percent to maximize favorable forces during the downward movement of the wing, and it decreases the area by a similar amount on the way up to minimize unfavorable forces. The force coefficients generated by the wing are "about two to three times greater than a static airfoil wing used for large airplanes," said Kamal Viswanath, a co-author who was a graduate research assistant working with Tafti when the work was performed and is now a research engineer at the U.S. Naval Research Lab's Laboratories for Computational Physics and Fluid Dynamics.

This study was just an initial step in the researchers' work. "Next, we'd like to explore deconstructing the seemingly complex motion of the bat wing into simpler motions, which is necessary to make a bat-inspired flying robot," said Viswanath. The researchers also want to keep the wing motion as simple as possible, but with the same force production as that of a real bat.

"We'd also like to explore other bat wing motions, such as a bat in level flight or a bat trying to maneuver quickly to answer questions, including: What are the differences in wing motion and how do they translate to air movement and forces that the bat generates? And finally, how can we use this knowledge to control the flight of an autonomous flying vehicle?" Tafti added.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kamal Viswanath, Krishnamurthy Nagendra, Jeffrey V. Cotter, Matthew Frauenthal and Danesh K. Tafti. Straight-line Climbing Flight Aerodynamics of a Fruit Bat. Physics of Fluids, 2014 DOI: 10.1063/1.4864297

Cite This Page:

American Institute of Physics. "Bats inspire 'micro air vehicle' designs: Small flying vehicles, complete with flapping wings, may now be designed." ScienceDaily. ScienceDaily, 18 February 2014. <www.sciencedaily.com/releases/2014/02/140218114225.htm>.
American Institute of Physics. (2014, February 18). Bats inspire 'micro air vehicle' designs: Small flying vehicles, complete with flapping wings, may now be designed. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/02/140218114225.htm
American Institute of Physics. "Bats inspire 'micro air vehicle' designs: Small flying vehicles, complete with flapping wings, may now be designed." ScienceDaily. www.sciencedaily.com/releases/2014/02/140218114225.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins