Featured Research

from universities, journals, and other organizations

Better way to make sense of 'Big Data?'

Date:
February 18, 2014
Source:
Cold Spring Harbor Laboratory
Summary:
Big data is everywhere, and we are constantly told that it holds the answers to almost any problem we want to solve. But simply having lots of data is not the same as understanding it. New mathematical tools are needed to extract meaning from enormous data sets. Researchers now challenge the most recent advances in this field, using a classic mathematical concept to tackle the outstanding problems in big data analysis.

Big Data is everywhere, and we are constantly told that it holds the answers to almost any problem we want to solve. Companies collect information on how we shop, doctors and insurance companies gather our medical test results, and governments compile logs of our phone calls and emails. In each instance, the hope is that critical insights are hidden deep within massive amounts of information, just waiting to be discovered.

But simply having lots of data is not the same as understanding it. Increasingly, new mathematical tools are needed to extract meaning from enormous data sets. In work published online today, two researchers at Cold Spring Harbor Laboratory (CSHL) now challenge the most recent advances in this field, using a classic mathematical concept to tackle the outstanding problems in Big Data analysis.

What does it mean to analyze Big Data? A major goal is to find patterns between seemingly unrelated quantities, such as income and cancer rates. Many of the most common statistical tools are only able to detect patterns if the researcher has some expectation about the relationship between the quantities. Part of the lure of Big Data is that it may reveal entirely new, unexpected patterns. Therefore, scientists and researchers have worked to develop statistical methods that will uncover these novel relationships.

In 2011, a distinguished group of researchers from Harvard University published a highly influential paper in the journal Science that advanced just such a tool. But in a paper published today in Proceedings of the National Academy of Sciences, CSHL Quantitative Biology Fellow Justin Kinney and CSHL Assistant Professor Gurinder "Mickey" Atwal demonstrate that this new tool is critically flawed. "Their statistical tool does not have the mathematical properties that were claimed," says Kinney.

Kinney and Atwal show that the correct tool was hiding in plain sight all along. The solution, they say, is a well known mathematical measure called "mutual information," first described in 1948. It was initially used to quantify the amount of information that could be transmitted electronically through a telephone cable; the concept now underlies the design of the world's telecommunications infrastructure. "What we've found in our work is that this same concept can also be used to find patterns in data," Kinney explains.

Applied to Big Data, mutual information is able to reveal patterns in large lists of numbers. For instance, it can be used to analyze patterns in data sets on the numerous bacterial species that help us digest food. "This particular tool is perfect for finding patterns in studies of the human microbiome, among many other things," Kinney says.

Importantly, mutual information provides a way of identifying all types of patterns within the data without reliance upon any prior assumptions. "Our work shows that mutual information very naturally solves this critical problem in statistics," Kinney says. "This beautiful mathematical concept has the potential to greatly benefit modern data analysis, in biology and in biology and many other important fields.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. B. Kinney, G. S. Atwal. Equitability, mutual information, and the maximal information coefficient. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1309933111

Cite This Page:

Cold Spring Harbor Laboratory. "Better way to make sense of 'Big Data?'." ScienceDaily. ScienceDaily, 18 February 2014. <www.sciencedaily.com/releases/2014/02/140218185128.htm>.
Cold Spring Harbor Laboratory. (2014, February 18). Better way to make sense of 'Big Data?'. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/02/140218185128.htm
Cold Spring Harbor Laboratory. "Better way to make sense of 'Big Data?'." ScienceDaily. www.sciencedaily.com/releases/2014/02/140218185128.htm (accessed October 21, 2014).

Share This



More Computers & Math News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Apple Enters Mobile Payment Business

Apple Enters Mobile Payment Business

AP (Oct. 20, 2014) Apple is making a strategic bet with the launch of Apple Pay, the mobile pay service aimed at turning your iPhone into your wallet. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins