Featured Research

from universities, journals, and other organizations

Huntington's disease: Hot on the trail of misfolded proteins' toxic modus operandi

Date:
February 19, 2014
Source:
Biophysical Society
Summary:
Proteins are the workhorses of the cell, and their correctly folded three-dimensional structures are critical to cellular functions. Misfolded structures often fail to properly perform these vital jobs, leading to cellular stress and devastating neurodegenerative disorders such as Huntington's disease. Researchers are now gaining a better understanding of the relationship between protein misfolding, aggregation and cell toxicity.

Proteins are the workhorses of the cell, and their correctly folded three-dimensional structures are critical to cellular functions. Misfolded structures often fail to properly perform these vital jobs, leading to cellular stress and devastating neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease.

In comparison with the mysteries of Alzheimer's or Parkinson's disease, Huntington's disease has a seemingly simple culprit: an expansion in the polyglutamine (polyQ) tract of a protein called "Huntingtin" (Htt). This polyQ expansion causes the Htt protein to misfold, which triggers a cascade of events -- including aggregation of the Htt protein into very stable, fibrillar, amyloid species, and ultimately, neuronal cell death.

"Despite the simplicity of the misfolding involved, we understand very little about why Htt -- an essential protein expressed ubiquitously in all human tissue -- becomes so toxic when misfolded," said Koning Shen, a grad student working in the Frydman Lab at Stanford University.

Shen will describe her team's multipronged efforts to gain a better understanding of the relationship between protein misfolding, aggregation and cell toxicity at the 58th Annual Biophysical Society Meeting, which takes place Feb. 15-19, 2014, in San Francisco, Calif.

The cause of neuronal toxicity in Huntington's disease remains unknown. Until recently, general consensus had associated fibrillar aggregates with pathogenesis in Huntington's disease. Newer studies, however, point to transient, intermediate species called "oligomers," which occur during the aggregation process, as the key players in neurotoxicity, rather than the fibrillar aggregates.

"Identifying the toxic perpetrators will help explain the pathogenesis of not only Huntington's disease, but perhaps Alzheimer's and Parkinson's as well," explained Shen.

Shen and colleagues also hope to discover which molecular factors may contribute to or ameliorate Htt toxicity. An extended polyQ region is the molecular signature of Htt aggregation, but regions flanking the polyQ tract can also alter the aggregation pathway.

"A molecular chaperone called 'TRiC' can suppress Huntington's disease pathogenesis by binding to one of the polyQ-flanking regions. These flanking regions act as a tool to probe the Htt aggregation pathway to learn how Htt forms toxic aggregate species and how the cell has developed tools to stop it," Shen said. "Altering the regions flanking the polyQ tract could remarkably impact both the aggregation and toxicity of the Huntingtin protein."

Deletions or mutations within these regions may either exacerbate or alleviate aggregation -- despite having the same polyQ length. And, Shen pointed out, "fibrillar aggregation and toxicity don't go hand-in-hand amongst these flanking mutants. This finding suggests that there may be toxic intermediate species manifested through the polyQ region, which can be modulated by the polyQ-flanking regions."

Since these flanking region modulations are independent of polyQ length, the ability to use these regions for small molecule or peptide therapeutics delivery will be powerful for Huntington's disease patients, who have already been expressing polyQ-expanded Htt for many years of their lives.

"By manipulating these flanking regions, we may be able to directly influence the aggregation pathway in Huntington's disease patients," said Shen. "Because TRiC binding to a polyQ flanking region suppresses pathogenesis, the interaction between TRiC and Htt shows great potential for therapeutics development."

Recent work has highlighted the ability of a domain of TRiC, called "Apical1," to exhibit TRiC-like effects at suppressing Htt pathogenesis. "This small domain can be more easily adapted into peptide therapeutics and administered to Huntington's disease patients. If developed with an understanding of the toxicity of these misfolded proteins, this next generation of therapeutics may emerge within the next 5 to 10 years," Shen noted.


Story Source:

The above story is based on materials provided by Biophysical Society. Note: Materials may be edited for content and length.


Cite This Page:

Biophysical Society. "Huntington's disease: Hot on the trail of misfolded proteins' toxic modus operandi." ScienceDaily. ScienceDaily, 19 February 2014. <www.sciencedaily.com/releases/2014/02/140219142400.htm>.
Biophysical Society. (2014, February 19). Huntington's disease: Hot on the trail of misfolded proteins' toxic modus operandi. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2014/02/140219142400.htm
Biophysical Society. "Huntington's disease: Hot on the trail of misfolded proteins' toxic modus operandi." ScienceDaily. www.sciencedaily.com/releases/2014/02/140219142400.htm (accessed August 1, 2014).

Share This




More Mind & Brain News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Work Can Be Stressful, But Is Unemployment Worse?

Work Can Be Stressful, But Is Unemployment Worse?

Newsy (Aug. 1, 2014) A new study shows stress at work can be hard on your health, but people who are unemployed might be at even greater risk of health problems. Video provided by Newsy
Powered by NewsLook.com
Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Newsy (July 31, 2014) Google says it is following Europe's new "Right To Be Forgotten Law," which eliminates user information upon request, but only to a certain degree. Video provided by Newsy
Powered by NewsLook.com
Stroke Signs: Three Hour Deadline

Stroke Signs: Three Hour Deadline

Ivanhoe (July 31, 2014) Sometimes the signs of a stroke are far from easy to recognize. Learn from one young father’s story on the signs of a stroke. Video provided by Ivanhoe
Powered by NewsLook.com
Grain Brain May Be Harming Us

Grain Brain May Be Harming Us

Ivanhoe (July 31, 2014) Could eating carbohydrates be harmful to our brain health? Find out what one neurologist says about changing our diets. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins