Featured Research

from universities, journals, and other organizations

Using holograms to improve electronic devices

Date:
February 19, 2014
Source:
University of California - Riverside
Summary:
Scientists have demonstrated a new type of holographic memory device that could provide unprecedented data storage capacity and data processing capabilities in electronic devices.

A prototype of the holographic memory device built in the lab of Alexander Khitun.
Credit: Image courtesy of University of California - Riverside

A team of researchers from the University of California, Riverside Bourns College of Engineering and Russian Academy of Science have demonstrated a new type of holographic memory device that could provide unprecedented data storage capacity and data processing capabilities in electronic devices.

The new type of memory device uses spin waves -- a collective oscillation of spins in magnetic materials -- instead of the optical beams. Spin waves are advantageous because spin wave devices are compatible with the conventional electronic devices and may operate at a much shorter wavelength than optical devices, allowing for smaller electronic devices that have greater storage capacity.

Experimental results obtained by the team show it is feasible to apply holographic techniques developed in optics to magnetic structures to create a magnonic holographic memory device. The research combines the advantages of the magnetic data storage with the wave-based information transfer.

"The results open a new field of research, which may have tremendous impact on the development of new logic and memory devices," said Alexander Khitun, the lead researcher, who is a research professor at UC Riverside.

There are three co-authors of the paper: Frederick Gertz, a graduate student who works with Khitun at UC Riverside, and A. Kozhevnikov and Y. Filimonov, both of the Russian Academy of Sciences.

Holography is a technique based on the wave nature of light which allows the use of wave interference between the object beam and the coherent background. It is commonly associated with images being made from light, such as on driver's licenses or paper currency. However, this is only a narrow field of holography.

The first holograms were designed in the last 1940s for use with electron microscopes. A decade later, with the advent of the laser, optical holographic images were popularized. Since, other fields have significantly advanced by using wave interference to produce holograms, including acoustic holograms used in seismic applications and microwave holography used in radar systems.

Holography has been also recognized as a future data storing technology with unprecedented data storage capacity and ability to write and read a large number of data in a highly parallel manner.

Khitun has been working for more than nine years to develop logic device exploiting spin waves. Most of his initial research was focused on the development of spin wave-based logic circuits similar to the ones currently used in the computers.

A critical moment occurred last year when he decided the device didn't need to replace the computer's electronic circuits. Instead, the device would complement the circuits, or help them accomplish certain tasks, such as image recognition, speech recognition and data processing.

The experiments outlined in the paper were conducted using a 2-bit magnonic holographic memory prototype device. A pair of magnets, which represent the memory elements, were aligned in different positions on the magnetic waveguides.

Spin waves propagating through the waveguides are affected by the magnetic field produced by the magnets. When spin waves interference was applied in the experiments, a clear picture was produced and the researchers could recognize the magnetic states of the magnets. All experiments were done at room temperature.


Story Source:

The above story is based on materials provided by University of California - Riverside. The original article was written by Sean Nealon. Note: Materials may be edited for content and length.


Journal Reference:

  1. F. Gertz, A. Kozhevnikov, Y. Filimonov, A. Khitun. Magnonic Holographic Memory. Applied Physics Letters, 2014 (in press) [link]

Cite This Page:

University of California - Riverside. "Using holograms to improve electronic devices." ScienceDaily. ScienceDaily, 19 February 2014. <www.sciencedaily.com/releases/2014/02/140219142604.htm>.
University of California - Riverside. (2014, February 19). Using holograms to improve electronic devices. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2014/02/140219142604.htm
University of California - Riverside. "Using holograms to improve electronic devices." ScienceDaily. www.sciencedaily.com/releases/2014/02/140219142604.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins