Featured Research

from universities, journals, and other organizations

Light used to quickly, easily measure blood's clotting properties

Date:
February 24, 2014
Source:
The Optical Society
Summary:
Defective blood coagulation is one of the leading causes of preventable death in patients who have suffered trauma or undergone surgery. Now, a new optical device requires only a few drops of blood and a few minutes to measure the key coagulation parameters that can guide medical decisions, like how much blood to transfuse or what doses of anticoagulant drugs to administer. The new device has the potential to provide rapid test results for patients in operating suites, emergency departments, and intensive care units, or for any patient with a coagulation disorder.

Defective blood coagulation is one of the leading causes of preventable death in patients who have suffered trauma or undergone surgery. The body's natural defense against severe blood loss is the clotting process, in which platelets, plasma proteins, and other blood components interact to form a sticky, mesh-like structure. But often things go wrong, and blood coagulates too little or too much.

To provide caregivers with timely information about the clotting properties of a patient's blood, researchers at Massachusetts General Hospital have developed an optical device that requires only a few drops of blood and a few minutes to measure the key coagulation parameters that can guide medical decisions, like how much blood to transfuse or what doses of anticoagulant drugs to administer. The researchers describe their new device in a paper published today in The Optical Society's (OSA) open-access journal Biomedical Optics Express.

"Currently, the most comprehensive measures of coagulation are a battery of lab tests that are expensive and can take hours to perform," said Seemantini Nadkarni, an assistant professor at the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School and senior author on the Biomedical Optics Express paper. She notes that other systems have been developed that provide clotting measurements at the point of care, but the systems can be big and expensive or have other limitations, such as requiring significant amounts of blood or only measuring clotting time.

"Our goal is to provide as much information as a lab test, but to provide it quickly and cheaply at a patient's bedside," Nadkarni said.

To reach this goal Nadkarni and her colleagues turned to an optical technique they pioneered called laser speckle rheology (LSR). In LSR, researchers shine laser light into a sample and monitor the patterns of light that bounce back. Nadkarni's team had previously used the technique to measure the mechanical properties of a range of different tissue types and found that it was extremely sensitive to the coagulation of blood.

When light hits a blood sample, blood cells and platelets scatter the light. In unclotted blood these light scattering particles move easily about, making the pattern of scattered light, called a speckle pattern, fluctuate rapidly.

"It's almost like looking at a starry night sky, with twinkling stars," Nadkarni said of the speckle pattern. "But as the blood starts to coagulate, blood cells and platelets come together within a fibrin network to form a clot. The motion is restricted as the sample get stiffer, and the twinkling of the speckle pattern is reduced significantly."

Nadkarni and her team used a miniature high-speed camera to record the fluctuating speckle pattern and then correlated the intensity of changes in the pattern with two important blood sample measurements: clotting time and concentration of fibrinogen, a protein that plays a key role in the clotting process. Doctors in an emergency room or performing surgery could use the measurements to make decisions about how much blood to give a bleeding patient and what type of blood product, for example platelets or fibrinogen, is needed most.

"The timely detection of clotting defects followed by the appropriate blood product transfusion is critical in managing bleeding patients," Nadkarni said. "If you transfuse too much, there could be further coagulation defects that occur, but if you don't transfuse enough, bleeding continues."

On the other end of the spectrum, Nadkarni says the device could also help patients whose blood coagulates too easily, forming clots inside of blood vessels in a condition called thrombosis. These patients take anticoagulation medications and must regularly visit labs to have their blood analyzed and the doses of the medications adjusted. Having a small device that could take the same measurements in a doctor's office or at home could reduce the cost and inconvenience, while increasing the safety of anticoagulation treatment, Nadkarni said.

"I look forward to working on the exciting next phase in which we plan to conduct clinical testing of the LSR device at the point of care in the operating room and in the doctor's office using just a drop or two of blood," said Markandey Tripathi, a postdoctoral fellow at the Wellman Center and lead author on the Biomedical Optics Express paper.

"Some other rapid devices exist but these have various disadvantages, ranging from poor correlation with central laboratory tests to skill required to interpret results," added Elizabeth van Cott, who is an associate professor of Pathology at Massachusetts General Hospital and Harvard Medical School, and a co-author on the paper. "The capability of the LSR device to provide rapid test results using small amounts of blood would be extremely valuable for patients particularly in operating suites, emergency departments, and intensive care units, as well as for any patient with a coagulation disorder."

Currently the optical device developed by Nadkarni and her colleagues is about the size of a tissue box and is connected to a computer. The team is working to further miniaturize the system and aims to perform clinical studies with a handheld version smaller than a cell phone within the next year.

The abstract of the article can be found online at: http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-5-3-817


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Markandey M. Tripathi, Zeinab Hajjarian, Elizabeth M. Van Cott, and Seemantini K. Nadkarni. Assessing blood coagulation status with laser speckle rheology. Biomedical Optics Express, Vol. 5, Issue 3, pp. 817-831 (2014)

Cite This Page:

The Optical Society. "Light used to quickly, easily measure blood's clotting properties." ScienceDaily. ScienceDaily, 24 February 2014. <www.sciencedaily.com/releases/2014/02/140224110025.htm>.
The Optical Society. (2014, February 24). Light used to quickly, easily measure blood's clotting properties. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/02/140224110025.htm
The Optical Society. "Light used to quickly, easily measure blood's clotting properties." ScienceDaily. www.sciencedaily.com/releases/2014/02/140224110025.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins