Featured Research

from universities, journals, and other organizations

New approach to chip design could yield light speed computing

Date:
February 25, 2014
Source:
Northeastern University
Summary:
Researchers are the first to create a device that integrates both optical and electronic signals to perform the most elementary computational operations that could inform 'light speed' computing.

Assistant professor of physics Swastik Kar and associate professor of mechanical and industrial engineering Yung Joon Jung are the first to create a device that integrates both optical and electronic signals to perform the most elementary computational operations.
Credit: Image courtesy of Northeastern University

Every second, your com­puter must process bil­lions of com­pu­ta­tional steps to pro­duce even the sim­plest out­puts. Imagine if every one of those steps could be made just a tiny bit more effi­cient. "It would save pre­cious nanosec­onds," explained North­eastern Uni­ver­sity assis­tant pro­fessor of physics Swastik Kar.

Kar and his col­league Yung Joon Jung, an asso­ciate pro­fessor in the Depart­ment of Mechan­ical and Indus­trial Engi­neering, have devel­oped a series of novel devices that do just that. Their work was pub­lished Sunday in the journal Nature Pho­tonics.

Last year, the inter­dis­ci­pli­nary duo com­bined their expertise -- Kar's in graphene, a carbon-​​based mate­rial known for its strength and con­duc­tivity, and Jung's in the mechanics of carbon nan­otubes, which are nanometer-​​sized rolled up sheets of graphene -- to unearth a phys­ical phe­nom­enon that could usher in a new wave of highly effi­cient electronics.

They dis­cov­ered that light-​​induced elec­trical cur­rents rise much more sharply at the inter­sec­tion of carbon nan­otubes and sil­icon, com­pared to the inter­sec­tion of sil­icon and a metal, as in tra­di­tional pho­to­diode devices. "That sharp rise helps us design devices that can be turned on and off using light," Kar said.

This finding has major impli­ca­tions for per­forming com­pu­ta­tions, which, in simple terms, also rely on a series of on-​​off switches. But in order to access the valu­able infor­ma­tion that can be stored on these switches, it must also be trans­ferred to and processed by other switches. "People believe that the best com­puter would be one in which the pro­cessing is done using elec­trical sig­nals and the signal transfer is done by optics," Kar said.

This isn't too sur­prising since light is extremely fast. Kar and Jung's devices -- which are the first to inte­grate elec­tronic and optical prop­er­ties on a single elec­tronic chip -- represent a crit­ical break­through in making this dream com­puter a reality.

The com­pu­ta­tional mod­eling of these junc­tions were per­formed in close col­lab­o­ra­tion with the group of Young-​​Kyun Kwon, a pro­fessor at Kyung Hee Uni­ver­sity, in Seoul, Korea.

In the new paper, the team presents three such new devices. The first is a so-​​called AND-​​gate, which requires both an elec­tronic and an optical input to gen­erate an output. This switch only trig­gers if both ele­ments are engaged.

The second device, an OR-​​gate, can gen­erate an output if either of two optical sen­sors is engaged. This same con­fig­u­ra­tion can also be used to con­vert dig­ital sig­nals into analog ones, an impor­tant capa­bility for actions such as turning the dig­ital con­tent of an MP3 file into actual music.

Finally, Kar and Jung also built a device that works like the front-​​end of a camera sensor. It con­sists of 250,000 minia­ture devices assem­bled over a centimeter-​​by-​​centimeter sur­face. While this device would require more inte­gra­tion to be fully viable, it allowed the team to test the repro­ducibility of their assembly process.

"Jung's method is a world-​​class tech­nique," Kar said. "It has really enabled us to design a lot of devices that are much more scalable."

While com­puters process bil­lions of com­pu­ta­tional steps each second, improving their capa­bility of per­forming those steps, Kar said, begins with the "demon­stra­tion of improving just one." Which is exactly what they've done.


Story Source:

The above story is based on materials provided by Northeastern University. The original article was written by Angela Herring. Note: Materials may be edited for content and length.


Journal Reference:

  1. Young Lae Kim, Hyun Young Jung, Sora Park, Bo Li, Fangze Liu, Ji Hao, Young-Kyun Kwon, Yung Joon Jung, Swastik Kar. Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics. Nature Photonics, 2014; DOI: 10.1038/nphoton.2014.1

Cite This Page:

Northeastern University. "New approach to chip design could yield light speed computing." ScienceDaily. ScienceDaily, 25 February 2014. <www.sciencedaily.com/releases/2014/02/140225134519.htm>.
Northeastern University. (2014, February 25). New approach to chip design could yield light speed computing. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/02/140225134519.htm
Northeastern University. "New approach to chip design could yield light speed computing." ScienceDaily. www.sciencedaily.com/releases/2014/02/140225134519.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins